Skip to main content
Log in

An Information Model for Digital Image Segmentation

  • MATHEMATICAL THEORY OF IMAGES AND SIGNALS REPRESENTING, PROCESSING, ANALYSIS, RECOGNITION, AND UNDERSTANDING
  • Published:
Pattern Recognition and Image Analysis Aims and scope Submit manuscript

Abstract

This paper investigates an iterative information-theoretical method for segmentation of digital images. A system that includes a segmentation algorithm with a parameter that determines the number of image segments and a procedure for setting the value of this parameter that minimizes the information redundancy measure is considered. A new simplified mathematical model is proposed to analyze the properties of this system. It is shown that there exists a minimum of the redundancy measure for the proposed model. The adequacy of the model is confirmed experimentally. The computational experiment carried out on images from the Berkeley Segmentation Dataset (BSDS500) shows that a segmented image corresponding to the minimum redundancy measure has the highest informational similarity to ground truth segmentations available in BSDS500. We compared the image segmentation results provided by the EDISON system using the minimum information redundancy criterion and entropy criterion. The advantage of the minimum redundancy criterion is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “SLIC superpixels compared to state-of-the-art superpixel methods,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012).  https://doi.org/10.1109/tpami.2012.120

    Article  Google Scholar 

  2. P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics,” in Proc. 8th IEEE Int. Conf. on Computer Vision (ICCV 2001), Vancouver, 2002, (IEEE, 2001), Vol. 2, pp. 416–423.  https://doi.org/10.1109/ICCV.2001.937655

  3. P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “From contours to regions: An empirical evaluation,” in IEEE Conf. on Computer Vision and Pattern Recognition, Miami, 2009 (IEEE, 2009), pp. 2294–2301.  https://doi.org/10.1109/CVPR.2009.5206707

  4. J. J. Atick and A. N. Redlich, “Towards a theory of early visual processing”, Neural Comput. 2, 308–320 (1990).  https://doi.org/10.1162/neco.1990.2.3.308

    Article  Google Scholar 

  5. H. B. Barlow, “Possible principles underlying the transformations of sensory messages”. Sens. Commun., 1, 217–234 (1961). https://doi.org/10.7551/mitpress/9780262518420.003.0013

    Article  Google Scholar 

  6. R. P. Bohush, S. V. Ablameyko, E. R. Adamovskiy, and D. Savca, “Image similarity estimation based on ratio and distance calculation between features,” Pattern Recognit. Image Anal. 30, 147–159 (2020). https://doi.org/10.1134/S1054661820020030

    Article  Google Scholar 

  7. M. Borsotti, P. Campadelli, and R. Schettini, “Quantitative evaluation of color image segmentation results”, Pattern Recognit. Lett. 19, 741–747 (1998).  https://doi.org/10.1016/S0167-8655(98)00052-X

    Article  MATH  Google Scholar 

  8. D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis”, IEEE Trans. Pattern Anal. Mach. Intell. 24, 603–619 (2002).  https://doi.org/10.1109/34.1000236

    Article  Google Scholar 

  9. P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmentation”, Int. J. Comput. Vision, 59, 167–181 (2004). https://doi.org/10.1023/B:VISI.0000022288.19776.77

    Article  Google Scholar 

  10. E. B. Fowlkes and C. L. Mallows, “A method for comparing two hierarchical clusterings”, J. Am. Stat. Assoc. 78, 553–569 (1983).

    Article  Google Scholar 

  11. A. L. N. Fred and A. K. Jain, “Robust data clustering,” in Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Madison, Wis., 2013 (IEEE, 2003), Vol. 2, pp. 128–133. https://doi.org/10.1109/CVPR.2003.1211462

  12. A. L. N. Fred and A. K. Jain, “Combining multiple clusterings using evidence accumulation,” IEEE Trans. Pattern Anal. Mach. Intell. 27, 835–850 (2005). https://doi.org/10.1109/TPAMI.2005.113

    Article  Google Scholar 

  13. I. Frosio and E. R. Ratner, “Adaptive segmentation based on a learned quality metric”, in Proc. 10th Int. Conf. on Computer Vision Theory and Applications, Vol. 2: VISAPP (SciTePress, 2015), pp. 283–292. https://doi.org/10.5220/0005257202830292

  14. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Pearson Prentice Hall, Upper Saddle River, N.J., 2008).

    Google Scholar 

  15. R. M. Haralick and L. G. Shapiro, “Image segmentation techniques”, Comput. Vision, Graphics, and Image Process. 29, 100–132 (1985). https://doi.org/10.1016/S0734-189X(85)90153-7

    Article  Google Scholar 

  16. L. Khelifi and M. Mignotte, “EFA-BMFM: A Multicriterion framework for the fusion of colour image segmentation,” Inf. Fusion 38, 104–121 (2017).  https://doi.org/10.1016/j.inffus.2017.03.001

    Article  Google Scholar 

  17. T. Kohlberger, V. Singh, C. Alvino, C. Bahlmann, and L. Grady, “Evaluating segmentation error without ground truth,” in Medical Image Computing and Computer-Assisted InterventionMICCAI 2012, Ed. by N. Ayache, H. Delingette, P. Golland, and K. Mori, Lecture Notes in Computer Science, vol. 7510 (Springer, Berlin, 2012), pp. 528–536. https://doi.org/10.1007/978-3-642-33415-3_65

    Book  Google Scholar 

  18. J. Liu and Y.-H. Yang, “Multiresolution color image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 16, 689–700 (1994).  https://doi.org/10.1109/34.297949

    Article  Google Scholar 

  19. D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics”, in Proc. Eighth IEEE Int. Conf. on Computer Vision (ICCV 2001), Vancouver, 2001 (IEEE, 2001), Vol. 2, pp. 416–423.  https://doi.org/10.1109/ICCV.2001.937655

  20. D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural image boundaries using local brightness, color, and texture cues”, IEEE Trans. Pattern Anal. Mach. Intell., 26, 530–549 (2004).  https://doi.org/10.1109/TPAMI.2004.1273918

    Article  Google Scholar 

  21. M. Meilă, “Comparing clusterings: an axiomatic view,” in Proc. 22nd Int. Conf. on Machine Learning, Bonn, Germany, 2005 (Assoc. for Computing Machinery, New York, 2005), pp. 577–584.  https://doi.org/10.1145/1102351.1102424

  22. M. Mignotte, “A label field fusion model with a variation of information estimator for image segmentation. information fusion”, Inf. Fusion 20, 7–20 (2014).  https://doi.org/10.1016/j.inffus.2013.10.012

    Article  Google Scholar 

  23. D. M. Murashov, “Localization of differences between multimodal images on the basis of an information-theoretical measure,” Pattern Recognit. Image Anal. 24, 133–143 (2014). https://doi.org/10.1134/S105466181401012X

    Article  Google Scholar 

  24. D. Murashov, “Theoretical-information quality model for image segmentation”, Procedia Eng. 201, 239–248 (2017).  https://doi.org/10.1016/j.proeng.2017.09.603

    Article  Google Scholar 

  25. D. Murashov, “Application of information redundancy measure to image segmentation,” in Intelligent Data Processing. IDP 2016, Ed. by V. Strijov, D. Ignatov, and K. Vorontsov, Communications in Computer and Information Science, vol. 794 (Springer, Cham, 2019), pp. 125–139. https://doi.org/10.1007/978-3-030-35400-8_9

  26. W. M. Rand, “Objective criteria for the evaluation of clustering methods”, J. Am. Stat. Assoc. 66, 846–850 (1971).  https://doi.org/10.1080/01621459.1971.10482356

    Article  Google Scholar 

  27. J. Rigau, M. Feixas, M. Sbert, A. Bardera, and I. Boada, “Medical Image Segmentation Based on Mutual Information Maximization”, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004, Ed. by C. Barillot, D. R. Haynor, and P. Hellier, Lecture Notes in Computer Science, vol. 3216 (Springer, Berlin, 2004), pp. 135–142. https://doi.org/10.1007/978-3-540-30135-6_17

    Book  MATH  Google Scholar 

  28. R. Robinson, O. Oktay, W. Bai, V. V. Valindria, M. M. Sanghvi, N. Aung, J. M. Paiva, F. Zemrak, K. Fung, E. Lukaschuk, A. M. Lee, V. Carapella, Y. Jin Kim, B. Kainz, S. K. Piechnik, S. Neubauer, S. E. Petersen, C. Page, D. Rueckert, and B. Glocker, “Real-time prediction of segmentation quality”, in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, Ed. by A. Frangi, J. Schnabel, C. Davatzikos, C. Alberola-López, and G. Fichtinger, Lecture Notes in Computer Science, vol. 11073 (Springer, Cham, 2018), pp. 578–585.  https://doi.org/10.1007/978-3-030-00937-3_66

    Book  Google Scholar 

  29. R. Rodríguez and A. G. Suarez, “An image segmentation algorithm using iteratively the mean shift,” in Progress in Pattern Recognition, Image Analysis and Applications. CIARP 2006, Ed. by J. F. Martínez-Trinidad, J. A. Carrasco Ochoa, and J. Kittler, Lecture Notes in Computer Science, vol. 4225 (Springer, Berlin, 2006), pp. 326–335.  https://doi.org/10.1007/11892755_33

    Book  Google Scholar 

  30. A. Strehl and J. Ghosh, “Cluster ensembles – A knowledge reuse framework for combining multiple partitions,” J. Mach. Learning Res. 3, 583–617 (2002). https://doi.org/10.1162/153244303321897735

    MathSciNet  MATH  Google Scholar 

  31. R. Unnikrishnan, C. Pantofaru, and M. Hebert, “A measure for objective evaluation of image segmentation algorithms,” in IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR’05) - Workshops, San Diego, Calif., 2005 (IEEE, 2005), pp. 34–41. https://doi.org/10.1109/CVPR.2005.390

  32. H. Zhang, J. E. Fritts, and S. A. Goldman, “An entropy-based objective evaluation method for image segmentation,” Proc. SPIE 5307, 38–49 (2003).  https://doi.org/10.1117/12.527167

    Article  Google Scholar 

  33. H. Zhang, J. E. Fritts, and S. A. Goldman, “Image segmentation evaluation: A survey of unsupervised methods,” Comput. Vision Image Understanding 110, 260–280 (2008).  https://doi.org/10.1016/j.cviu.2007.08.003

    Article  Google Scholar 

Download references

Funding

This research was carried out at the Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences in the framework of a state task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Murashov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This paper is a completely original work of its author, it has not been published before, and it will not be sent to other publishers until the decision of the PRIA Editorial Board is received.

Conflict of Interest

The process of writing and the content of the article does not give grounds for raising the issue of a conflict of interest.

Additional information

Dmitry Mikhailovich Murashov. Born January 30, 1958. Graduated from the Ordzhonikidze Moscow Aviation Institute in 1981 (with the specialization of Automatic Control Systems). Received his Candidate’s degree in 1990. Associate Professor in the specialty of Theoretical Foundations of Informatics. He currently works at the Institute of Cybernetics and Educational Informatics of the Federal Research Center “Computer Science and Control” (Russian Academy of Sciences), Moscow. Author of more than 80 papers. Scientific interests: automatic control, image processing and analysis, and pattern recognition.

Translated by Yu. Kornienko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murashov, D.M. An Information Model for Digital Image Segmentation. Pattern Recognit. Image Anal. 31, 632–645 (2021). https://doi.org/10.1134/S1054661821040179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054661821040179

Keywords:

Navigation