Skip to main content
Log in

Digital Facial Anthropometry: Application and Implementation

  • APPLIED PROBLEMS
  • Published:
Pattern Recognition and Image Analysis Aims and scope Submit manuscript

Abstract

It is examined how to use digital facial anthropometry for scientific and practical problems; from biometry up to its different applications including medicine, biology, genetics, pattern recognition, and criminalistics. The presented review includes a brief history of anthropometry (as a descriptive and comparative science, the subject of investigation of which is Homo sapiens) and its transformation into modern computer methods for facial anthropometry. Concepts on face morphotype and phenotype; problems on morphology and morphometry as a basic means of facial digital anthropometry; quantitative and qualitative methods for estimating facial characteristics and parameters; problems for searching for associations between gene patterns in the genome and a man’s facial features; problems for estimating facial attractiveness; correlation between facial anthropometry and “Chernov’s faces” and with cognitive computer graphics used in practical medicine; human facial phenomenon and the problems with emotions, sex, and psychical type recognition; special cases for recognizing facial images (FIs), and methods for their solutions in the frames of digital facial anthropometry and examples of its solution are presented in the paper. The prediction on the close correlation between facial anthropometry and the Internet of Things as a modern world surrounded by a person in the 21st century is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. Catalog of Anthropological Instruments GPM. available from http://antropolog-instrument.ru/?an=catalog, accessed at 15.12.2018.

  2. Automatic identification. Biometrical identification. Format for exchanging biometrical information. Part 5. Information on FIs. Moscow, Standardinform, 2006 on biometry in Part 5: “Information on Face Images”.

  3. https://opencv.org/license.html.

  4. https://dlib.net/license.html.

  5. According to the little lines in hexagram (hexagram “I Tsin”, available from https://ru.wikipedia.org/wiki/ hexagram_“I Tsin” access data 10.01.019.

REFERENCES

  1. Bertillonage — the Art of Identification. Available at: http://kriminalisty.ru/stati/istorija-kriminalistiki/bertilyonaj.html (Accessed: 10.12.2018) [in Russian].

  2. M. M. Gerasimov, Basics of Facial Reconstruction on the Skull (Sovetskaya Nauka, Moscow, 1949) [in Russian].

    Google Scholar 

  3. GPM Anthropological Instruments. Available at: https://www.dksh.com/global-en/home/technology/product-search/anthropological-instruments (Accessed: 10.05.2019).

  4. Y. S. Jayaratne and R. A. Zwahlen, “Application of digital anthropometry for craniofacial assessment,” Craniomaxillofac. Trauma Reconstr. 7 (2), 101–107 (2014). https://doi.org/10.1055/s0034-1371540

    Article  Google Scholar 

  5. G. A. Kukharev, N. Kaziyeva, and D. A. Tsymbal, “Barcoding technologies for facial biometrics: state-of-the-art and new solutions,” Nauchno-Tekh. Vestn. Inf. Tekhnol., Mekh. Opt. (Sci. Tech. J. Inf. Technol., Mech. Opt.) 18 (1), 72–86 (2018) [in Russian]. https://doi.org/10.17586/2226-1494-2018-18-1-72-86

  6. D. DeCarlo, D. Metaxas, and M. Stone, “An anthropometric face model using variational techniques,” in SIGGRAPH98: Proc. 25th Annual Conf. on Computer Graphics and Interactive Techniques (New York, USA, 1998), pp. 67–74. https://doi.org/10.1145/280814.280823

  7. C. K. Deutsch, A. R. Shell, R. W. Francis, and B. D. Bird, “The Farkas system of craniofacial anthropometry: Methodology and normative databases,” in Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease, Ed. by V. Preedy (Springer, New York, 2012), pp. 561–573. https://doi.org/10.1007/978-1-4419-1788-1_29

    Book  Google Scholar 

  8. State Standard 19794-5-2013. Information Technologies. Biometrics. Biometric Data Interchange Formats. Part 5: Face Image Data (Standardinform, Moscow, 2015) [in Russian].

    Google Scholar 

  9. M. B. Stegmann, “Analysis and segmentation of face images using point annotations and linear subspace techniques,” Technical Report IMM-REP-2002-22 (Technical University of Denmark, 2002). Available at: http://www2.imm.dtu.dk/pubdb/edoc/imm922.pdf (Accessed: 02.01.2019).

  10. S. Gupta, K. R. Castleman, M. K. Markey, and A. C. Bovik, “Texas 3D face recognition database,” in Proc. 2010 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI 2010) (Austin, TX, USA, 2010), pp. 97–100. https://doi.org/10.1109/SSIAI.2010.5483908

  11. S. Gupta, M. K. Markey, and A. C. Bovik, “Anthropometric 3D face recognition,” Int. J. Comput. Vision 90 (3), 331–349 (2010). https://doi.org/10.1007/s11263-010-0360-8

    Article  Google Scholar 

  12. CUHK Face Sketch Database. Available at: http://mmlab.ie.cuhk.edu.hk/facesketch.html (Accessed: 03.01.2019).

  13. CUHK Face Sketch FERET Database (CUFSF). Available at: http://mmlab.ie.cuhk.edu.hk/archive/cufsf/ (Accessed: 03.01.2019).

  14. X. Wang and X. Tang, “Face photo-sketch synthesis and recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 31 (11), 1955–1967 (2009). https://doi.org/10.1109/TPAMI.2008.222

    Article  Google Scholar 

  15. Luxand: Face Recognition, Face Detection and Facial Feature Detection Technologies. Available at: http://www.luxand.com (Accessed: 04.01.2019).

  16. Software “Portret Client 5.0.” System “Portrait-Search.” Available at: http://www.portret.tomsk.ru/index.php?page=products (Accessed: 04.01.2019).

  17. P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J. Comput. Vision 57 (2), 137–154 (2004). https://doi.org/10.1023/B:VISI.0000013087.49260.fb

    Article  Google Scholar 

  18. V. Kazemi and J. Sullivan, “One millisecond face alignment with an ensemble of regression trees,” in Proc. 27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014) (Columbus, OH, USA, 2014), pp. 1867–1874. https://doi.org/10.1109/CVPR.2014.241

  19. A. M. Torres-Restrepo, et al., “Agreement between cranial and facial classification through clinical observation and anthropometric measurement among Envigado school children,” BMC Oral Health 14 (1), 50–57 (2014). https://doi.org/10.1186/1472-6831-14-50

    Article  Google Scholar 

  20. P. J. Driessen, H. Vuyk, and J. Borgstein, “New insights into facial anthropometry in digital photographs using iris dependent calibration,” Int. J. Pediatr. Otorhinolaryngol. 75 (4), 579–584 (2011). https://doi.org/10.1016/j.ijporl.2011.01.023

    Article  Google Scholar 

  21. L. G. Farkas, M. J. Katic, C. R. Forrest, et al., “International anthropometric study of facial morphology in various ethnic groups/races,” J. Craniofac. Surg. 16 (4), 615–646 (2005). https://doi.org/10.1097/01.scs.0000171847.58031.9e

    Article  Google Scholar 

  22. R. R. Ramires, L. P. Ferreira, et al., “Proposal for facial type determination based on anthropometry,” J. Soc. Bras. Fonoaudiol. 23 (3), 195–200 (2011). https://doi.org/10.1590/S2179-64912011000300003

    Article  Google Scholar 

  23. M. Arapović-Savić, et al., “Linear measurements of facial morphology using automatic approach,” Serb. Dent. J. 63 (2), 66–70 (2016). https://doi.org/10.1515/sdj-2016-0007

    Article  Google Scholar 

  24. S. Mackenzie and C. Wilkinson, “Morphological and morphometric changes in the faces of female-to-male (FtM) transsexual people,” Int. J. Transgend. 18 (2), 172–181 (2017). https://doi.org/10.1080/15532739.2017.1279581

    Article  Google Scholar 

  25. N. Ramanathan and R. Chellappa, “Modeling age progression in young faces,” in Proc. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006) (New York, USA, 2006), Vol. 1, pp. 387–394. https://doi.org/10.1109/cvpr.2006.187

  26. C. Sforza, G. Grandi, M. De Menezes, et al., “Age- and sex-related changes in the normal human external nose,” Forensic Sci. Int. 204 (1–3), 205.e1–205.e9 (2010). https://doi.org/10.1016/j.forsciint.2010.07.027

    Article  Google Scholar 

  27. S. Kumar, S. Ranjitha, and H. N. Suresh, “An active age estimation of facial image using Anthropometric Model and Fast ICA,” J. Eng. Sci. Technol. Rev. 10 (1), 100–106 (2017). https://doi.org/10.25103/jestr.101.14

    Article  Google Scholar 

  28. L. Du, M. Yi, E. Blasch, and H. Ling, “GARP-Face: Balancing privacy protection and utility preservation in face de-identification,” in Proc. IEEE/IAPR International Joint Conference on Biometrics (IJCB 2014) (Clearwater, FL, USA, 2014), pp. 1–8. https://doi.org/10.1109/BTAS.2014.6996249

  29. F. De la Torre, J. F. Cohn, and D. Huang, “System and method for processing video to provide facial de-identification,” Patent US 9,799,096 B1 (2017).

  30. A. Lanitis, C. J. Taylor, and T. F. Cootes, “Automatic interpretation and coding of face images using flexible models,” IEEE Trans. Pattern Anal. Mach. Intell. 19 (7), 743–756 (1997). https://doi.org/10.1109/34.598231

    Article  Google Scholar 

  31. T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,” IEEE Trans. Pattern Anal. Mach. Intell. 23 (6), 681–685 (2001). https://doi.org/10.1109/34.927467

    Article  Google Scholar 

  32. T. Sucontphunt and U. Neumann, “3D facial surface and texture synthesis using 2D landmarks from a single face sketch,” in Proc. 2nd Joint 3DIM/3DPVT Conference: 3D Imaging, Modeling, Processing, Visualization & Transmission (3DIMPVT 2012) (Zurich, Switzerland, 2012), pp. 152–159. https://doi.org/10.1109/3DIMPVT.2012.65

  33. C. Sforza, C. Dellavia, M. De Menezes, et al., “Three-dimensional facial morphometry: from anthropometry to digital morphology,” in Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease, Ed. by V. Preedy (Springer, New York, 2012), pp. 611–624. https://doi.org/10.1007/978-1-4419-1788-1_32

    Book  Google Scholar 

  34. O. Krutikova and A. Glazs, “Development of a new method for adapting a 3D model from a minimum number of 2D images,” Technol. Comput. Control 14 (1), 12–17 (2013).

    Google Scholar 

  35. P. H. Truong, C.-W. Park, M. Lee, et al., “Rapid implementation of 3D facial reconstruction from a single image on an android mobile device,” KSII Trans. Internet Inf. Syst. 8 (5), 1690–1710 (2014). https://doi.org/10.3837/tiis.2014.05.011

    Article  Google Scholar 

  36. C. Sforza and V. F. Ferrario, “Soft-tissue facial anthropometry in three dimensions: from anatomical landmarks to digital morphology in research, clinics and forensic anthropology,” J. Anthropolog. Sci. 84, 97–124 (2006).

    Google Scholar 

  37. K. Schmid, D. Marx, and A. Samal, “Computation of a face attractiveness index based on neoclassical canons, symmetry, and golden ratios,” Pattern Recogn. 41 (8), 2710–2717 (2008). https://doi.org/10.1016/j.patcog.2007.11.022

    Article  Google Scholar 

  38. P. M. Pallett, S. Link, and K. Lee, “New “golden” ratios for facial beauty,” Vision Res. 50 (2), 149–154 (2010). https://doi.org/10.1016/j.visres.2009.11.003

    Article  Google Scholar 

  39. C. Soler, J. Kekäläinen, M. Núñez, et al. “Male facial anthropometry and attractiveness,” Perception 41 (10), 1234–1245 (2012). https://doi.org/10.1068/p7214

    Article  Google Scholar 

  40. J. Milutinovic, K. Zelic, and N. Nedeljkovic, “Evaluation of facial beauty using anthropometric proportions,” Sci. World J. 2014, Article ID 428250, 1–8 (2014). https://doi.org/10.1155/2014/428250

    Article  Google Scholar 

  41. M. K. Alam, N. F. Mohd Noor, R. Basri, T. F. Yew, and T. H. Wen, “Multiracial facial golden ratio and evaluation of facial appearance,” PLoS One 10 (11), e0142914 (2015). https://doi.org/10.1371/journal.pone.0142914

    Article  Google Scholar 

  42. D. Zhang, F. Chen, and Y. Xu, “Typical facial beauty analysis,” in Computer Models for Facial Beauty Analysis (Springer, Cham, 2016), pp. 19–31. https://doi.org/10.1007/978-3-319-32598-9_2

    Book  Google Scholar 

  43. P. M. Prendergast, “Facial proportions,” in Advanced Surgical Facial Rejuvenation: Art and Clinical Practice, Ed. by A. Erian and M. A. Shiffman (Springer, Berlin, Heidelberg, 2012), pp. 15–22. https://doi.org/10.1007/978-3-642-17838-2_2

    Book  Google Scholar 

  44. A. Iskornev, “Face harmonization,” Esteticheskaya Meditsina 16 (3), 265–271 (2017) [in Russian].

    Google Scholar 

  45. I. Bagić and Z. Verzak, “Craniofacial anthropometric analysis in Down’s syndrome patients,” Coll. Antropol. 27 (Suppl. 2), 23–30 (2003).

    Google Scholar 

  46. V. F. Ferrario, C. Dellavia, A. Colombo, and C. Sforza, “Three-dimensional assessment of nose and lip morphology in subjects with Down syndrome,” Ann. Plast. Surg. 53 (6), 577–583 (2004). https://doi.org/10.1097/01.sap.0000130702.51499.6b

    Article  Google Scholar 

  47. J. Starbuck, R. H. Reeves, and J. Richtsmeier, “Morphological integration of soft-tissue facial morphology in Down syndrome and siblings,” Am. J. Phys. Anthropol. 146 (4), 560–568 (2011). https://doi.org/10.1002/ajpa.21583

    Article  Google Scholar 

  48. Y. S. N. Jayaratne, I. Elsharkawi, E. A. Macklin, et al., “The facial morphology in Down syndrome: A 3D comparison of patients with and without obstructive sleep apnea,” Am. J. Med. Genet. A 173 (11), 3013–3021 (2017). https://doi.org/10.1002/ajmg.a.38399

    Article  Google Scholar 

  49. A. Yilmaz and M. Akcaalan, “What can anthropometric measurements tell us about obstructive sleep apnoea?” Folia Morphol. 76 (2), 301–306 (2017). https://doi.org/10.5603/FM.a2016.0058

    Article  Google Scholar 

  50. L. M. Dering, M. Saade, et al., “Evaluation of anthropometric facial landmarks in woman with blepharophimosis, ptosis, and epicanthus inversus syndrome (BPES),” RSBO 14 (3), pp. 147–151 (2017). https://doi.org/10.21726/rsbo.v1i3.484

    Article  Google Scholar 

  51. J. Axelsson, T. Sundelin, M. J. Olsson, et al., “Identification of acutely sick people and facial cues of sickness,” Proc. R. Soc. B: Biol. Sci. 285, 20172430 (2018). https://doi.org/10.1098/rspb.2017.2430

    Article  Google Scholar 

  52. A. J. Naimi, S. Bolourian, et al., “Investigating the relationship between major thalassemia diseases with anthropometric sizes of head and facial soft tissue,” Biosci. Biotechnol. Res. Commun. 10 (2), 233–240 (2017). https://doi.org/10.21786/bbrc/10.2/40

    Article  Google Scholar 

  53. L. G. Farkas, M. J. Katic, T. A. Hreczko, et al., “Anthropometric proportions in the upper lip-lower lip-chin area of the lower face in young white adults,” Am. J. Orthod. 86 (1), 52–60 (1984). https://doi.org/10.1016/0002-9416(84)90276-8

    Article  Google Scholar 

  54. A. Etöz, “Anthropometric analysis of the nose,” in Rhinoplasty, Ed. by M. J. Brenner (IntechOpen, 2011), pp. 3–10. https://doi.org/10.5772/27218

    Book  Google Scholar 

  55. M. F. Catapan, M. L. Okimoto, et al., “Anthropometric analysis of human head to identification of height in proper use of ballistic helmets,” in Proc. 5th Int. Conf. on Applied Human Factors and Ergonomics (AHFE 2014) (Kraków, Poland, 2014), pp. 1–12.

  56. L. Goto, W. Lee, Y. Song, et al., “Analysis of a 3D anthropometric data set of children for design application,” in Proc. 19th Triennial Congress of the International Ergonomics Association (IEA 2015) (Melbourne, Australia, 2015), pp. 1–7.

  57. R. Fenlon, “Facial respirator shape analysis using 3D anthropometric data,” NIST Interagency/Internal Report (NISTIR) No. 7460, 18 pp. (NIST, 2007).

    Google Scholar 

  58. J. Jarkiewicz, R. Kocielnik, and K. Marasek, “Anthropometric facial emotion recognition,” in Human-Computer Interaction: Novel Interaction Methods and Techniques, HCI 2009, Ed. by J. A. Jacko, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2009), Vol. 5611, pp. 188–197. https://doi.org/10.1007/978-3-642-02577-8_21

    Book  Google Scholar 

  59. C. Loconsole, C. Runa Miranda; G. Augusto, et al., “Real-time emotion recognition: Novel method for geometrical facial features extraction,” in Proc. 9th Int. Conf. on Computer Vision Theory and Applications (VISAPP 2014) (Lisbon, Portugal, 2014), Vol. 1, pp. 378–385.

  60. L. Paternoster, A. I. Zhurov, A. M. Toma, et al., “Genome-wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position,” Am. J. Hum. Genet. 90 (3), 478–485 (2012). https://doi.org/10.1016/j.ajhg.2011.12.021

    Article  Google Scholar 

  61. F. Liu, F. van der Lijn, C. Schurmann, et al., “A genome-wide association study identifies five loci influencing facial morphology in Europeans,” PLoS Genet. 8 (9), e1002932 (2012). https://doi.org/10.1371/journal.pgen.1002932

    Article  Google Scholar 

  62. P. Claes, D. K. Liberton, K. Daniels, et al., “Modeling 3D facial shape from DNA,” PLoS Genet. 10 (3), e1004224 (2014). https://doi.org/10.1371/journal.pgen.1004224

    Article  Google Scholar 

  63. Shaffer J.R., Orlova E., Lee M.K. et al., “Genome-wide association study reveals multiple loci influencing normal human facial morphology,” PLoS Genet. 12 (8), e1006149 (2016). https://doi.org/10.1371/journal.pgen.1006149

    Article  Google Scholar 

  64. M. K. Lee, J. R. Shaffer, E. J. Leslie, E. Orlova, J. C. Carlson, E. Feingold, et al., “Genome-wide association study of facial morphology reveals novel associations with FREM1 and PARK2,” PLoS One 12 (4), e0176566 (2017).  https://doi.org/10.1371/journal.pone.0176566

    Article  Google Scholar 

  65. P. Claes, J. Roosenboom, et al., “Genome-wide mapping of global-to-local genetic effects on human facial shape,” Nat. Genet. 50, 414–423 (2018). https://doi.org/10.1038/s41588-018-0057-4

    Article  Google Scholar 

  66. C. Meng, O. A. Zeleznik, et al., “Dimension reduction techniques for the integrative analysis of multi-omics data,” Briefings Bioinf. 17 (4), 628–641 (2016). https://doi.org/10.1093/bib/bbv108

    Article  Google Scholar 

  67. G. A. Kukharev and N. L. Shchegoleva, “Algorithms of two-dimensional projection of digital images in eigensubspace: History of development, implementation and application,” Pattern Recogn. Image Anal. 28 (2), 185–206 (2018). https://doi.org/10.1134/S1054661818020116

    Article  Google Scholar 

  68. V. V. Vel’kov, “Multidimensional biology and multidimensional medicine,” Khimiya i Zhizn’, No. 3, 10–15 (2007) [in Russian].

  69. H. Chernoff, “The use of faces to represent points in k-dimensional space graphically,” J. Am. Stat. Assoc. 68 (342), 361–368 (1973). https://doi.org/10.1080/01621459.1973.10482434

    Article  Google Scholar 

  70. B. T. Kabulov and N. B. Tashpulatova, “Enhanced Chernoff faces,” in Proc. 4th Int. Conf. on Application of Information and Communication Technologies (AICT2010) (Tashkent, Uzbekistan, 2010), pp. 1–4. https://doi.org/10.1109/icaict.2010.5612059

  71. I. A. Osadchaya, O. G. Berestneva, and Ye. V. Nemerov, “Analysis of multidimensional medical data using pictographics “Chernoff faces,” Bull. Sib. Med. 13 (4), 89–93 (2014) [in Russian].

    Article  Google Scholar 

  72. I. S. Kochetygov and R. O. Prokopyev, “Visualization of multidimensional medical data with the use of pictographics “Chernoff faces,” in Proc. Int. Conf. on Information Technology in Science, Management, Social Sphere, and Medicine (Tomsk, Russia, 2014), Part 1, pp. 242–244 [in Russian].

  73. A. Antonov, “Making Chernoff faces for data visualization,” Available at: https://mathematicaforprediction.wordpress.com/2016/06/03/making-chernoff-faces-for-data-visualization (Accessed: 11.01.2019).

  74. S. L. Panfilov, Phenomenon of a Human Face in the Annex to the Hexagrams of the Book of ChangesI Ching” (Electronic Book, 2007) [in Russian].

    Google Scholar 

  75. The I Ching. Book of Changes (Azbuka-Attikus, Moscow, 2015) [in Russian].

  76. A. A. Krushinsky, “What are I-Ching hexagrams?” Obshchestvo i Gosudarstvo v Kitae (Society and State in China) 35, 205–213 (2005) [in Russian].

  77. H. Ugail and A. Al-dahoud, “Is gender encoded in the smile? A computational framework for the analysis of the smile driven dynamic face for gender recognition,” Vis. Comput. 34 (9), 1243–1254 (2018). https://doi.org/10.1007/s00371-018-1494-x

    Article  Google Scholar 

  78. Yu. Vorob’eva, “Artificial intelligence has learned to distinguish between men and women by a smile,” Available at: www.vesti.ru/doc.html?id=2997031 (Accessed: 11.01.2019).

  79. X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks on deep learning systems using data poisoning,” arXiv preprint arXiv:1712.05526v1 (2017). https://arxiv.org/abs/1712.05526v1

  80. Y. Wang and M. Kosinski, “Deep neural networks are more accurate than humans at detecting sexual orientation from facial images,” J. Pers. Soc. Psychol. 114 (2), 246–257 (2018). https://doi.org/10.1037/pspa0000098

    Article  Google Scholar 

  81. C. Thomas and A. Kovashka, “Persuasive faces: generating faces in advertisements,” in Proc. British Machine Vision Conference (BMVC 2018) (Newcastle upon Tyne, UK, 2018), Article 95, pp. 1–14.

  82. M. Wang and W. Deng, “Deep face recognition: A survey,” arXiv preprint arXiv:1804.06655v8 (2019). https://arxiv.org/abs/1804.06655v8

  83. G. Guo and N. Zhang, “A survey on deep learning based face recognition,” Comput. Vision Image Understanding 189, 102805, 1–37 (2019). https://doi.org/10.1016/j.cviu.2019.102805

    Article  Google Scholar 

  84. P. Forczmański, G. Kukharev, and N. Shchegoleva, “Simple and robust facial portraits recognition under variable lighting conditions based on two-dimensional orthogonal transformations,” in Image Analysis and ProcessingICIAP 2013, Ed. by A. Petrosino, Lecture Notes in Computer Science (Springer, Berlin, Heidelberg, 2013), Vol. 8156, pp. 602–611. https://doi.org/10.1007/978-3-642-41181-6_61

    Book  Google Scholar 

  85. G. A. Kukharev, Yu. N. Matveev, and N. L. Shchegoleva, “People retrieval by means of composite pictures: Problem state-of-the-art and technologies,” Nauchno-Tekh. Vestn. Inf. Tekhnol., Mekh. Opt. (Sci. Tech. J. Inf. Technol., Mech. Opt.) 14 (6), 123–136 (2014) [in Russian].

  86. G. Kukharev, Yu. Matveev, and P. Forczmański, “An approach to improve accuracy of photo–to–sketch matching,” in Image Analysis and Recognition, ICIAR 2016, Ed. by A. Campilho and F. Karray, Lecture Notes in Computer Science (Springer, Cham, 2016), Vol. 9730, pp. 385–393. https://doi.org/10.1007/978-3-319-41501-7_44

    Book  Google Scholar 

  87. L. Coetzee and J. Eksteen, “The Internet of Things — promise for the future? An introduction,” in IST-Africa 2011 Conference Proceedings (Gaborone, Botswana, 2011), pp. 1–9. http://www.IST-Africa.org/Conference2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. A. Kukharev or N. Kaziyeva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they do not have a conflict of interest.

COMPLICANCE OF ETHICAL STANDARDS

The presented paper does not contain our own investigations with people participation as objects of research and presents review results from open publications.

Additional information

Georgii Alexandrovich Kukharev was born in 1941 in Leningrad, where he graduated from school and institute. He was a Doctor of Science (1986) and Prof. (2006) of St. Petersburg Electrotechnical University LETI. In 1993–2018 he was Prof. in West Pomeranian University of Technology, Poland, Szczecin. In 2001–2003 he was research professor in Ecole Centrale de Lyon, France. In 2005–2006 he was research professor in Hanoi University (Vietnam). He is the author of more than 100 scientific studies, has 40 patents, and 10 monographs devoted to methods and means of digital procession for signals and images. Scopus ID: 18037842200, ORCID ID:0000-0003-2188-2172.

Nazym Kaziyeva was born in Uralsk, Republic Kazakhstan. She is holder of a Master’s degree (2012). She is postgraduate of ITMO University. She is co-author of more than 15 scientific studies and educational supplies. Current interests: biometry, face identification, voice technologies. Scopus ID: 57203633843, ORCID ID: 0000-0002-7559-1795

Translated by Yu. Zikeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukharev, G.A., Kaziyeva, N. Digital Facial Anthropometry: Application and Implementation. Pattern Recognit. Image Anal. 30, 496–511 (2020). https://doi.org/10.1134/S1054661820030141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054661820030141

Keywords:

Navigation