Skip to main content
Log in

Kinetic–Statistical Neuromodeling and Problems of Trust in Artificial Intelligence Systems

  • AUTOMATION AND CONTROL IN ENGINEERING
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

The focus of this article is related to cognitive sciences: the problems of modeling neural networks and consciousness in general are discussed. Examples of the inadequacy of artificial intelligence systems based on neural network modeling are given, and problems of the modern numerical model of neural networks are considered. In order to solve these problems, the methodology of consciousness neuromodeling based on kinetic-statistical methods is proposed. It is shown that, in the process of quasi-chaotic complication of the neuro-like graph during the percolation transition, large structures (clusters) are formed, which can be interpreted as a manifestation of the primary elements of consciousness. The manifestation of the phenomenon of self-consciousness in the process of complication of the system of neural clusters is discussed. It is possible to use the results of this research for generation of complex neural networks with criteria of finite structure evaluation (number of cycles, simple paths, and Euler’s number).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Chalmers, D.J., The Conscious Mind: In Search of a Fundamental Theory, New York: Oxford Univ. Press, 1997.

    Google Scholar 

  2. Bloom, F.E., Lazerson, A., and Hofstadter, L., Brain, Mind and Behavior, New York: W. H. Freeman and Company, 1985.

    Google Scholar 

  3. Turing, A.M., Computing machinery and intelligence, Mind, 1950, vol. 59, no. 236, pp. 433–460. https://doi.org/10.1093/mind/lix.236.433

    Article  MathSciNet  Google Scholar 

  4. Alekseev, A.Yu., Kompleksnyi test T’yuringa. Filosofsko-metodologicheskie i sotsiokul’turnye aspekty (The Turing Test: Philosophical, Methodological and Sociocultural Aspects), Moscow: IInteLL, 2013.

  5. Alekseev, A.Yu., The concept of zombies and problems of consciousness, Problemy soznaniya v filosofii i nauke (Problems of Consciousness in Philosophy and Science), Dubrovsky, D.I., Ed., Moscow: Kanon+ ROOI Reabilitatsiya, 2009, p. 195.

  6. Marcus, G. and Davis, E., Rebooting AI: Building Artificial Intelligence We Can Trust, Vintage, 2019.

    Google Scholar 

  7. Marcus, G., The next decade in AI: Four steps towards robust artificial intelligence, 2020. https://doi.org/10.48550/arXiv.2002.06177

  8. Langlotz, C.P., Allen, B., Erickson, B.J., Kalpathy-Cramer, Ja., Bigelow, K., Cook, T.S., Flanders, A.E., Lungren, M.P., Mendelson, D.S., Rudie, J.D., Wang, G., and Kandarpa, K., A roadmap for foundational research on artificial intelligence in medical imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop, Radiology, 2019, vol. 291, no. 3, pp. 781–791. https://doi.org/10.1148/radiol.2019190613

    Article  Google Scholar 

  9. Garbuk, S.V., Intellimetry as a way to ensure AI trustworthiness, 2018 Int. Conf. on Artificial Intelligence Applications and Innovations (IC-AIAI), Nicosia, Cyprus, 2018, IEEE, 2018, pp. 27–30. https://doi.org/10.1109/IC-AIAI.2018.8674447

  10. Stewart, M., The limitations of machine learning, Towards Data Science, 2019. https://towardsdatascience.com/the-limitations-of-machine-learning-a00e0c3040c6.

  11. Chollet, F., On the measure of intelligence, 2019. https://doi.org/10.48550/arXiv.1911.01547

  12. Nie, Yi., Williams, A., Dinan, E., Bansal, M., Weston, J., and Kiela, D., Adversarial NLI: A new benchmark for natural language understanding, Proc. 58th Annu. Meeting of the Assoc. for Computational Linguistics, Assoc. for Computational Linguistics, 2020, pp. 4885–4901. https://doi.org/10.18653/v1/2020.acl-main.441

  13. Heaven, D., Why deep-learning AIs are so easy to fool: Artificial-intelligence researchers are trying to fix the flaws of neural networks, Nature, 2019, vol. 574, no. 7777, pp. 163–166. https://doi.org/10.1038/d41586-019-03013-5

    Article  Google Scholar 

  14. Deng, L., The MNIST database of handwritten digit images for machine learning research [Best of the Web], IEEE Signal Process. Mag., 2012, vol. 29, no. 6, pp. 141–142. https://doi.org/10.1109/MSP.2012.2211477

    Article  Google Scholar 

  15. Image classification on ImageNet, Paperswithcode.com. https://paperswithcode.com/sota/image-classification-on-imagenet,

  16. Garbuk, S.V. and Gubinskii, A.M., Iskusstvennyi intellekt v vedushchikh stranakh mira: strategii razvitiya i voennoe primenenie (Artificial Intelligence in Leading World Countries: Strategies of Development and Military Use), Moscow: Znanie, 2020.

  17. Keaten, J. and O’Brien, M., UN urges moratorium on use of AI that imperils human rights, AP News, 2021. https://apnews.com/article/technology-business-laws-united-nations-artificial-intelligence-efafd7b1a5bf47afb1376e198842e69d.

  18. Simonov, N.A., Spots concept for problems of artificial intelligence and algorithms of neuromorphic systems, Russ. Microelectron., 2020, vol. 49, no. 6, pp. 431–444. https://doi.org/10.1134/S106373972005008X

    Article  Google Scholar 

  19. Simonov, N., The SPOT model for representation and processing of qualitative data and semantic information, CEUR Workshop Proc., 2021, vol. 3044, p. 8. https://ceur-ws.org/Vol-3044/paper08.pdf

    Google Scholar 

  20. Hall, P., Curtis, J., and Pandey, P., Machine Learning for High-Risk Applications: Techniques for Responsible AI, O’Reilly Media, 2023.

    Google Scholar 

  21. GOST R (State Standard) 59898-2021: Quality assurance of artificial intelligence systems. General, 2021

  22. Ben-Naim, E. and Krapivsky, P.L., Kinetic theory of random graphs: From paths to cycles, Phys. Rev. E, 2005, vol. 71, no. 2, p. 026129. https://doi.org/10.1103/PhysRevE.71.026129

    Article  Google Scholar 

  23. Krapivsky, P.L. and Redner, S., Emergent network modularity, J. Stat. Mech.: Theory Exp., 2017, vol. 2017, p. 073405. https://doi.org/10.1088/1742-5468/aa7a3f

    Article  MathSciNet  Google Scholar 

  24. Krapivsky, P.L., Redner, S., and Ben-Naim, E., A Kinetic View of Statistical Physics, Cambridge: Cambridge Univ. Press, 2010.

    Book  Google Scholar 

  25. Albert, R. and Barabási, A.-L., Statistical mechanics of complex networks, Rev. Mod. Phys., 2002, vol. 74, no. 1, p. 47. https://doi.org/10.1103/RevModPhys.74.47

    Article  MathSciNet  Google Scholar 

  26. Yang, W., Miller, J.K., Carillo-Reid, L., Pnevmatikakis, E., Paninski, L., Yuste, R., and Peterka, D.S., Simultaneous multi-plane imaging of neural circuits, Neuron, 2016, vol. 89, no. 2, pp. 269–284. https://doi.org/10.1016/j.neuron.2015.12.012

    Article  Google Scholar 

  27. Severino, F.P.U., Ban, J., Song, Q., Tang, M., Bianconi, G., Cheng, G., and Torre, V., The role of dimensionality in neuronal network dynamics, Sci. Rep., 2016, vol. 6, p. 29640. https://doi.org/10.1038/srep29640

    Article  Google Scholar 

  28. Aristov, V.V., Zabelok, S.A., and Frolova, A.A., Modelirovanie neravnovesnykh struktur kineticheskimi metodami (Modeling of Nonequilibrium Structures by Kinetic Methos), Moscow: Fizmatkniga, 2017.

  29. Aristov, V.V. and Il’in, O.V., Methods and problems in the kinetic approach for simulating biological structures, Komp’yuternye Issled. Model., 2017, vol. 10, no. 6, pp. 851–866. https://doi.org/10.20537/2076-7633-2018-10-6-851-866

    Article  Google Scholar 

  30. Aristov, V.V., Biological systems as nonequilibrium structures described by kinetic methods, Results Phys., 2019, vol. 13, p. 102232. https://doi.org/10.1016/j.rinp.2019.102232

    Article  Google Scholar 

  31. Simpson, S.L., Moussa, M.N., and Laurienti, P.J., An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks, Neuroimage, 2012, vol. 60, no. 2, pp. 1117–1126. https://doi.org/10.1016/j.neuroimage.2012.01.071

    Article  Google Scholar 

  32. Kozma, R. and Puljic, M., Random graph theory and neuropercolation for modeling brain oscillations at criticality, Curr. Opin. Neurobiol., 2015, vol. 31, pp. 181–188. https://doi.org/10.1016/j.conb.2014.11.005

    Article  Google Scholar 

  33. Alivisatos, A.P., Chun, M., Church, G.M., Greenspan, R.J., Roukes, M.L., and Yuste, R., The brain activity map project and the challenge of functional connectomics, Neuron, 2012, vol. 74, no. 6, pp. 970–974. https://doi.org/10.1016/j.neuron.2012.06.006

    Article  Google Scholar 

  34. Bouchard, K.E., Mesgarani, N., Johnson, K., and Chang, E.F., Functional organization of human sensorimotor cortex for speech articulation, Nature, 2013, vol. 495, no. 7441, pp. 327–332. https://doi.org/10.1038/nature11911

    Article  Google Scholar 

  35. Stepanyan, I.V. and Petoukhov, S.V., The matrix method of representation, analysis and classification of long genetic sequences, Information, 2017, vol. 8, no. 1, p. 12. https://doi.org/10.3390/info8010012

    Article  Google Scholar 

  36. Tsygankov, V.D., On the neurocomputer model of the “living state” of matter and its “biological field” (in the light of G. Ling and E. Bauer’s works), Int. J. Gen. Syst., 2015, vol. 44, no. 6, pp. 642–654. https://doi.org/10.1080/03081079.2015.1032526

    Article  Google Scholar 

  37. Stepanyan, I.V., Methodology and tools for designing binary neural networks, Programm. Comput. Software, 2020, vol. 46, pp. 49–56. https://doi.org/10.1134/S0361768820010065

    Article  MathSciNet  Google Scholar 

  38. Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., and Maida, A.S., Deep learning in spiking neural network, Neural Networks, 2018, vol. 111, pp. 47–63. https://doi.org/10.1016/j.neunet.2018.12.002

    Article  Google Scholar 

Download references

Funding

The section “Anti-speculative direction in modeling consciousness in artificial intelligence” was supported by the State Academic University for the Humanities according to the results of the selection of scientific projects conducted by the Ministry of Higher Education and Science of the Russian Federation and ESISI, project no. 1221010000041-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Stepanyan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, A.Y., Aristov, V.V., Garbuk, S.V. et al. Kinetic–Statistical Neuromodeling and Problems of Trust in Artificial Intelligence Systems. J. Mach. Manuf. Reliab. 52, 779–790 (2023). https://doi.org/10.1134/S105261882307004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S105261882307004X

Keywords:

Navigation