Skip to main content
Log in

Fracture of 30CrMnSiA Steel under Mixed-Mode Loads

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Notched 30CrMnSiA steel specimens were exposed to rupture load (mode I) at an angle of 90° between their fracture surface and load direction and to shear load (mode II) at an angle of 45° and 15°. For shear loading, Richard’s grips were used allowing one to vary the load from pure tension to pure shear by varying the notch orientation angle to the tensile load direction. Assessed under loading were the parameters of acoustic emission (AE) and strain fields (by the digital image correlation (DIC) method), and after failure, the damage parameters and microhardness on the polished lateral surface of the specimens, and the macro- and microreliefs of fracture surfaces. It is shown that increasing the shear component under tension changes the mechanical and the acoustic parameters of the specimens (total number of AE signals, their activity, bAE-value), and the critical temperature of brittleness, changing the fracture surface morphology from ductile to brittle at a load orientation of 45°. Simultaneously, a nonlinear dependence of the damage parameters (relative area of microcracks S*, their average length lav, orientation to the loading axis) on the load angle is observed, showing a correlation with principal strains estimated by the DIC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Qian, J. and Fatemi, A., Mixed Mode Fatigue Crack Growth: A Literature Survey, Eng. Fract. Mech., 1996, vol. 55, no. 6, pp. 969–990.

    Article  Google Scholar 

  2. Astafiev, V.I. and Krutov, A.N., Stress Distribution Near the Tip of an Inclined Microcrack in the Nonlinear Fracture Mechanics, Mech. Solids, 2001, vol. 36, no. 5, pp. 101–108.

    Google Scholar 

  3. Shlyannikov, V.N. and Tumanov, A.V., Elastic Mode Mixity Parameters for Semi-Elliptical Crack under Biaxial Loading, Izv. Saratov Univ. Math. Mech. Inform., 2010, vol. 10, no. 2, pp. 73–80.

    Article  Google Scholar 

  4. Stepanova, L.V., Mathematical Methods of Fracture Mechanics, Moscow: Fizmat, 2009.

  5. Ohira, T. and Pao, Y.-H., Quantitative Characterization of Microcracking in A533B Steel by Acoustic Emission, Metallurg. Trans. A, 1989, vol. 20, pp. 1105–1114.

    Article  ADS  Google Scholar 

  6. Shiwa, M., Yamaguchi, A., Sato, M., Murao, S., and Nagai, M., Acoustic Emission Waveform Analysis from Weld Defects in Steel Ring Samples, J. Press. Vessel Technol. Trans. ASME, 1999, vol. 121, no. 1, pp. 77–83. https://doi.org/10.1115/1.2883671

    Article  Google Scholar 

  7. Aggelis, D.G., Mpalaskas, A.C., and Matikas, T.E., Investigation of Different Fracture Modes in Cement-Based Materials by Acoustic Emission, Cem. Concr. Res., 2013, vol. 48, pp. 1–8. https://doi.org/10.1016/j.cemconres.2013.02.002

    Article  Google Scholar 

  8. Ohno, K. and Ohtsu, M., Crack Classification in Concrete Based on Acoustic Emission, Constr. Build. Mater., 2010, vol. 24, no. 12, pp. 2339–2346. https://doi.org/10.1016/j.conbuildmat.2010.05.004

    Article  Google Scholar 

  9. Fotouhi, M. and Ahmadi, N.M., Investigation of the Mixed-Mode Delamination in Polymer-Matrix Composites Using Acoustic Emission Technique, J. Reinf. Plast. Compos., 2014, vol. 33, no. 19, pp. 1767–1782. https://doi.org/10.1177/0731684414544391

    Article  Google Scholar 

  10. Botvina, L.R., Zharkova, N.A., Tyutin, M. R., Soldatenkov, A.P., Dyomina, Yu.A., and Levin, V.P., Development of Plastic Flow Zones and Damage under Various Types of Loading, Zavod. Lab.. Diagnos. Mater., 2013, vol. 79, no. 5. pp. 46–55.

    Google Scholar 

  11. Botvina, L.R., Soldatenkov, A.P., and Tyutin, M.R., Development of Damage in Low-Carbon Steel under Mode I and Mode II Loading Conditions, Russ. Metall., 2011, pp. 837–843. https://doi.org/10.1134/S0036029511090096

  12. Yoneyama, S., Morimoto, Y., and Takashi, M., Automatic Evaluation of Mixed-Mode Stress Intensity Factors Utilizing Digital Image Correlation, Strain, 2006, vol. 42, no. 1, pp. 21–29.

    Article  Google Scholar 

  13. Réthoré, J., Gravouil, A., Morestin, F., and Combescure, A., Estimation of Mixed-Mode Stress Intensity Factors Using Digital Image Correlation and an Interaction Integral, Int. J. Fract., 2005, vol. 132, no. 1, pp. 65–79. https://doi.org/10.1007/s10704-004-8141-4

    Article  Google Scholar 

  14. Nunes, L.C.S. and Reis, J.M.L., Experimental Investigation of Mixed-Mode-I/II Fracture in Polymer Mortars Using Digital Image Correlation Method, Lat. Am. J. Solids Struct., 2014, vol. 11, no. 2, pp. 330–343. https://doi.org/10.1590/S1679-78252014000200011

    Article  Google Scholar 

  15. Tariq, F., Khan, M., Farhan, M., and Siddiqui, M.Z., Strength of Aluminum Alloys under Static Mixed-Mode I/II Loading Conditions, J. Test. Eval., 2018, vol. 46, no. 1, p. JTE20160475.

  16. Pirondi, A. and Dalle Donne, C., Characterisation of Ductile Mixed-Mode Fracture with the Crack-Tip Displacement Vector, Eng. Fract. Mech., 2001, vol. 68, no. 12, pp. 1385–1402. https://doi.org/10.1016/S0013-7944(01)00023-6

    Article  Google Scholar 

  17. Liu, S., Chao, Y.J., and Zhu, X., Tensile-Shear Transition in Mixed Mode I/III Fracture, Int. J. Solids Struct., 2004, vol. 41, no. 22–23, pp. 6147–6172. https://doi.org/10.1016/j.ijsolstr.2004.04.044

    Article  Google Scholar 

  18. Gopalakrishnan, K. and Mecholsky, J.J., Quantitative Fractography of Mixed Mode Fracture in Glass and Ceramics, J. Eur. Ceram. Soc., 2014, vol. 34, no. 14, pp. 3247–3254. https://doi.org/10.1016/j.jeurceramsoc.2014.03.019

    Article  Google Scholar 

  19. Greenhalgh, E.S., Rogers, C., and Robinson, P., Fractographic Observations of Delamination Growth Mechanisms, in ICCM Int. Conf. Compos. Mater., 2007.

  20. Shih, C.F., Small-Scale Yielding Analysis of Mix Mode Plane Strain Crack Problems, in Fracture Analysis: Proc. Natl. Symp. Fract. Mech., 1973, part 2, pp. 187–210.

  21. Naghipour, P., Schneider, J., Bartsch, M., Hausmann, J., and Voggenreiter, H., Fracture Simulation of CFRP Laminates in Mixed Mode Bending, Eng. Fract. Mech., 2009, vol. 76, no. 18, pp. 2821–2833. https://doi.org/10.1016/j.engfracmech.2009.05.009

    Article  Google Scholar 

  22. Richard, H.A. and Benitz, K., A Loading Device for the Creation of Mixed Mode in Fracture Mechanics, Int. J. Fract., 1983, vol. 22, pp. 55–58.

    Article  Google Scholar 

  23. Botvina, L.R., Petersen, T.B., and Tyutin, M.R., Estimation and Analysis of Acoustic Emission Parameter b, Zavod. Lab. Diagnos. Mater., 2011, vol. 77, no. 3, pp. 43–50.

  24. Botvina, L.R. and Ilchenko, B.V., Structural Effects for Mixed Loading Modes, Def. Razr. Mater., 2008, no. 9, pp. 12–19.

    Google Scholar 

  25. Soldatenkov, A.P., Botvina, L.R., Tyutin, M.R., Levin, V.P, and Zharkova, N.A., Fracture of a Low-Carbon Steel under Mode I, Mode II, and Mixed-Mode Loading Conditions, Russ. Metall., 2013, pp. 751–759.

Download references

Funding

The work was performed under State Assignment No. 075-00715-22-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. R. Botvina or E. N. Beletsky.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2023, Vol. 26, No. 2, pp. 30–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botvina, L.R., Beletsky, E.N., Tyutin, M.R. et al. Fracture of 30CrMnSiA Steel under Mixed-Mode Loads. Phys Mesomech 26, 391–401 (2023). https://doi.org/10.1134/S1029959923040021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959923040021

Keywords:

Navigation