Skip to main content
Log in

Comparative Analysis of Wave and Strain Behavior at the Interface of Elastic Bodies under Perfect Contact and Slip Boundary Conditions

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Wave propagation through the interface of elastic bodies was studied under perfect contact and slip boundary conditions occurring during friction and surface wave propagation along interfaces in multiphase and heterogeneous materials. The dependences of the interfacial Fresnel coefficients and strain amplitudes on the wave incidence angle were calculated for perfect contact and slip conditions. The results obtained can be used to analyze the effect of boundary conditions, properties of contacting bodies, and loading conditions on wave processes and strains at the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Surface Layers and Internal Interfaces in Heterogeneous Materials, Panin, V.E., Ed., Novosibirsk: Izd-vo SO RAN, 2006.

  2. Structure and Properties of Internal Interfaces in Metals, Bokshtein, B.S., Ed., Moscow: Nauka, 1988.

  3. Gleiter, H., On the Structure of Grain Boundaries in Metals, Mater. Sci. Eng., 1982, vol. 52, no. 2, pp. 91–131. https://doi.org/10.1007/978-94-009-7870-6_8

    Article  Google Scholar 

  4. Deng, L., Liu, Z., Wang, B., Han, K., and Xiang, H., Effects of Interface Area Density and Solid Solution on the Microhardness of Cu-Nb Microcomposite Wires, Mater. Сharacter., 2019, vol. 150, pp. 62–66. https://doi.org/10.1016/j.matchar.2019.02.002

    Article  Google Scholar 

  5. Rollett, A.D., Abnormal Grain Growth and Texture Development, Mater. Sci. Forum, 2006, vol. 495–497, pp. 1171–1176. https://doi.org/10.4028/www.scientific.net/MSF.495-497.1171

    Article  Google Scholar 

  6. Dmitriev, A.I., Nikonov, A.Yu., Shugurov, A.R., and Panin, A.V., The Role of Grain Boundaries in Rotational Deformation in Polycrystalline Titanium under Scratch Testing, Phys. Mesomech., 2019, vol. 22, no. 5, pp. 365–374. https://doi.org/10.1134/S1029959919050035

    Article  Google Scholar 

  7. Golovnev, I.F., Golovneva, E.I., and Fomin, V.M., Molecular Dynamics Study of the Interface Effect on the Fracture of a Heterostructure under Uniaxial Tension, Phys. Mesomech., 2021, vol. 24, no. 1, pp. 14–19. https://doi.org/10.1134/S1029959921010033

    Article  Google Scholar 

  8. Andrievski, R.A. and Glezer, A.M., Strength of Nanostructures, Phys.-Usp., 2009, vol. 52, no. 4, p. 315.

    Article  ADS  Google Scholar 

  9. Gusev, A.I., Effects of the Nanocrystalline State in Solids, Phys.-Usp., 1998, vol. 41, no. 1, pp. 49–76. https://doi.org/10.1070/PU1998v041n01ABEH000329

    Article  ADS  Google Scholar 

  10. Kar’kina, L.E., Kar’kin, I.N., Kuznetsov, A.R., and Gornostyrev, Yu.N., Grain-Boundary Shear-Migration Coupling in Al Bicrystals. Atomistic Modeling, Phys. Solid State, 2018, vol. 60, no. 10, pp. 1916–1923. https://doi.org/10.1134/S1063783418100104

    Article  ADS  Google Scholar 

  11. Achenbach, J.D., Wave Propagation in Elastic Solids, Amsterdam: North-Holland, 1975.

  12. Stoneley, R., Elastic Waves at the Surface of Separation of Two Solids, Proc. Roy. Soc. Lond. A, 1924, vol. 106, pp. 416–428. https://doi.org/10.1098/rspa.1924.0079

    Article  ADS  Google Scholar 

  13. Schoenberg, M., Elastic Wave Behavior Across Linear Slip Interface, J. Acoust. Soc. Am., 1980, vol. 68, no. 5, pp. 1516–1521. https://doi.org/10.1121/1.385077

    Article  ADS  Google Scholar 

  14. Rokhlin, S.I. and Wang, Y.J., Analysis of Boundary Conditions for Elastic Wave Interaction with an Interface between Two Solids, J. Acoust. Soc. Am., 1991, vol. 89, pp. 503–515. https://doi.org/10.1121/1.400374

    Article  ADS  Google Scholar 

  15. Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, Cambridge [Eng.] University Press, 1892-93.

  16. Cooper, H.F.Jr., Reflection and Transmission of Oblique Plane Waves at a Plane Interface between Viscoelastic Media, J. Acoust. Soc. Am., 1967, vol. 42, no. 5, pp. 1064–1069. https://doi.org/10.1121/1.1910691

    Article  ADS  Google Scholar 

  17. Landau, L.D. and Lifshitz, E.M., Theory of Elasticity, Oxford: Pergamon Press, 1986.

  18. Brekhovskikh, L.M. and Godin, O.A., Acoustics of Layered Media, Berlin: Springer-Verlag, vol. I, 1990; vol. II, 1999.

  19. Kaushic, A. and Gupta, A., Reflection of Oblique Incident Acoustic Waves at Various Fluid-Solid Interface for Varying Material Properties, Appl. Acoustics, 2021, vol. 174, pp. 107611–107630. https://doi.org/10.1016/j.apacoust.2020.107611

    Article  Google Scholar 

  20. Zheng, G., Xia, W., Ma, L., Sun, W., Sun, Ch., Xu, Yi., and Zhao, X., An Experimental Method to Measure the Layer Thickness and Wave Velocity of Copper-Steel Composite Board without Interface Echo, Measurement, 2016, vol. 91, pp. 77–83. https://doi.org/10.1016/j.measuremen2016.05.044

    Article  ADS  Google Scholar 

  21. Yu, H. and Wang, X., Dispersion Characteristics of Wave Propagation in Layered Piezoelectric Structures, Wave Motion, 2020, vol. 96, pp. 102559–102572. https://doi.org/10.1016/j.wavemoti.2020.102559

    Article  MathSciNet  Google Scholar 

  22. Li, Yue., Wei, P., and Wang, Ch., Propagation of Thermoelastic Waves Across an Interface with Consideration of Co-Uple Stress and Second Sound, Math. Mech. Solids, 2019, vol. 24, pp. 235–257. https://doi.org/10.1177/1081286517736999

    Article  MathSciNet  Google Scholar 

  23. Nie, B.-D. and Cao, B.-Ya., Reflection and Refraction of a Thermal Wave at an Ideal Interface, Int. J. Heat Mass., 2018, vol. 116, pp. 314–328. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.043

    Article  Google Scholar 

  24. Chertova, N.V., The Character of Deformations on the Free Surface of an Elastic Body, Tech. Phys. Lett., 2015, vol. 41, no. 11, pp. 1075–1079.

    Article  ADS  Google Scholar 

  25. Chertova, N.V. and Grinyaev, Yu.V., Strain Variation with Doppler Shifts on the Free Surface of an Elastic Body Phys. Mesomech., 2020, vol. 23, no. 3, pp. 205–212. https://doi.org/10.1134/S1029959920030042

    Article  Google Scholar 

  26. Chertova, N.V. and Grinyaev, Yu.V., Features of the Stress-Strain State at the Interface between Elastic Media under Perfect Contact Conditions, Fiz. Mezomekh., 2018, vol. 21, no. 2, pp. 56–67. https://doi.org/10.24411/1683-805X-2018-12006

    Article  Google Scholar 

  27. Karpuk, M.M., Kostyuk, D.A., Kuzavko, Yu.A., and Shavrov, V.G., Reflection and Refraction of Acoustic Waves at the Boundary between a Magnetoacoustic Material and a Dielectric, Acoustical Phys., 2004, vol. 50, no. 5, pp. 544–551.

    Article  ADS  Google Scholar 

  28. Raj, B., Rajendran, V., and Palanichamy, P., Science and Technology of Ultrasonics, Pangbourne, U.K.: Alpha Science International, 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Chertova.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2022, Vol. 25, No. 2, pp. 87–100.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chertova, N.V., Grinyaev, Y.V. Comparative Analysis of Wave and Strain Behavior at the Interface of Elastic Bodies under Perfect Contact and Slip Boundary Conditions. Phys Mesomech 25, 353–365 (2022). https://doi.org/10.1134/S1029959922040099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922040099

Keywords:

Navigation