Skip to main content
Log in

Features of Solid Particle Erosion of Metals

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

The paper analyzes the features of solid particle erosion and their effect on the erosion resistance of metals. The analysis is based on the structural-temporal concept of fracture and its incubation time criterion allowing one to estimate the threshold velocity of particles versus their radius. Such dependences of the velocity threshold are presented for AMg6 aluminum and VT1-0 titanium alloys tested for drop weight impact and erosion by corundum (grit F120) particles with a velocity of up to 146 m/s. The surface of the alloys eroded at different particle velocities is examined by scanning electron microscopy, and their fracture features on scales lower than those of ordinary tensile fracture are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Valiev, R., Nanostructuring of Metals by Severe Plastic Deformation for Advanced Properties, Nature Mater., 2004, vol. 3, no. 8, pp. 511–516.

    Article  ADS  Google Scholar 

  2. Smirnova, N.A., Levit, V.I., Pilyugin, V.I., Kuznetsov, R.I., Davydova, L.S., and Sazonova, V.A., Evolution of Structure of fcc Single Crystals during Strong Plastic Deformation, Phys. Met. Metallogr., 1986, vol. 61, pp. 127–134.

    Google Scholar 

  3. Segal, V.M., Reznikov, V.I., Drobyshevskiy, A.E., and Kopylov, V.I., Deformation Processing of Metals by a Simple Shear, Izv. USSR Acad. Sci. Metals, 1981, vol. 1, pp. 115–123.

    Google Scholar 

  4. Saito, Y., Utsunomiya, H., Tsuji, N., and Sakai, T., Novel Ultra-High Straining Process for Bulk Materials—Development of the Accumulative Roll-Bonding Process, Acta Mater., 1999, vol. 47, pp. 579–583.

    Article  ADS  Google Scholar 

  5. Zherebtsov, S.V., Salishchev, G.A., Galeyev, R.M., and Valiakhmetov, O.R., Production of Submicrocrystalline Structure in Large-Scale Ti–6Al–4V Billet by Warm Severe Deformation Processing, Scripta Mater., 2004, vol. 51, no. 12, pp. 1147–1151.

    Article  Google Scholar 

  6. Beygelzimer, Y., Varyukhin, V., Synkov, S., and Orlov, D., Useful Properties of Twist Extrusion, Mater. Sci. Eng. A, 2009, vol. 503, no. 1–2, pp. 14–17.

    Article  Google Scholar 

  7. Petrov, Y.V. and Smirnov, V.I., Interrelation between the Threshold Characteristics of Erosion and Spall Fracture, Tech. Phys., 2010, vol. 55, no. 2, pp. 230–235.

    Article  Google Scholar 

  8. Bragov, A.M., Karikaloo, B.L., Petrov, Yu.V., Konstantinov, A.Yu., Lamzin, D.A., Lomunov, A.K., and Smirnov, V.I., High-Rate Deformation and Fracture of Fiber Reinforced Concrete, J. Appl. Mech. Tech. Phys., 2012, vol. 53, no. 6, pp. 926–933.

    Article  ADS  Google Scholar 

  9. Goldsmith, W., Sackman, J.L., and Ewerts, C., Static and Dynamic Fracture Strength of Barre Granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1976, vol. 13, no. 11, pp. 303–309.

    Article  Google Scholar 

  10. Mikhailova, N.V. and Petrov, Yu.V., Effect of Impact Time Parameters on the Dynamic Strength in Spall Fracture, Phys. Mesomech., 2021, vol. 24, no. 1, pp. 9–13. https://doi.org/10.1134/S1029959921010021

    Article  Google Scholar 

  11. Petrov, Y.V., Smirnov, I.V., and Utkin, A.A., Effects of Strain-Rate Strength Dependence in Nanosecond Load Duration Range, Mech. Solids, 2010, vol. 45, no. 3, pp. 476–484.

    Article  ADS  Google Scholar 

  12. Evstifeev, A.D., Smirnov, I.V., and Petrov, Y.V., Effect of Dynamic Strength of a Material on Its Erosion Resistance, Phys. Solid State, 2020, vol. 62, no. 10, pp. 1737–1740.

    Article  ADS  Google Scholar 

  13. Kazarinov, N.A., Evstifeev, A.D., Petrov, Yu.V., and Lashkov, V.A., Dynamic Strength Properties of the Surface of Ultra-Fine-Grained Aluminum Alloy under Conditions of High-Speed Erosion, Dokl. Phys., 2016, vol. 61, no. 5, pp. 32–234.

    Article  Google Scholar 

  14. Evstifeev, A.D., Smirnov, I.V., and Petrov, Y.V., Effect of Ultrafine-Grained Structure of a Material on the Strength Characteristics of an Aluminum Alloy upon Impact Loads, Phys. Solid State, 2019, vol. 61, no. 6, pp. 1062–1066.

    Article  ADS  Google Scholar 

  15. Petrov, Yu.V., Gruzdkov, A.A., and Bratov, V.A., Structural-Temporal Theory of Fracture as a Multiscale Process, Phys. Mesomech., 2012, vol. 15, no. 3–4, pp. 232–237.

    Article  Google Scholar 

  16. Panin, V.E., Structural Levels of Deformation of Solids, Novosibirsk: Nauka, 1985.

  17. Nikolis, J.S., Dynamics of Hierarchical Systems: An Evolutionary Approach, Springer-Verlag, 1986.

  18. Petrov, Y.V., Gruzdkov, A.A., and Morozov, N.F., The Principle of Equal Powers for Multilevel Fracture in Continua, Dokl. Phys., 2005, vol. 50, no. 9, pp. 448–451.

    Article  ADS  Google Scholar 

  19. Petrov, Y.V. and Utkin, A.A., Dependence of the Dynamic Strength on Loading Rate, Sov. Mater. Sci., 1989, vol. 25, no. 2, pp. 153–156.

    Article  Google Scholar 

  20. Petrov, Y.V. and Morozov, N.F., On the Modeling of Fracture of Brittle Solids, J. Appl. Mech., 1994, vol. 61, no. 3, pp. 710–712.`

    Article  ADS  Google Scholar 

  21. Lashkov, V.A., Experimental Determination of the Coefficients of Restitution of Particles in the Flow of a Gas Suspension in a Collision Against the Surface, J. Eng. Phys., 1991, vol. 60, pp. 154–159.

    Article  Google Scholar 

  22. Petrov, Y.V. and Smirnov, V.I., Temperature Dependence of the Threshold Impact Velocity for Erosion Fracture, Dokl. Phys., 2007, vol. 52, no. 10, pp. 574–576.

    Article  ADS  Google Scholar 

  23. Kolesnikov, Yu.V. and Morozov, E.M., Contact Fracture Mechanics, Moscow: Nauka, 1989.

  24. Johnson, K., Contact Mechanics, Cambridge: Cambridge Univ. Press, 1985.

Download references

Funding

The equipment for mechanical and structural research was provided by Laboratory for Mechanics of Advanced Bulk Nanomaterials for Innovative Engineering Applications and Centers for Extreme States of Materials and Construction and for Nanotechnologies of St. Petersburg State University. The work was supported by RFBR grant No. 19-31-60031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Evstifeev.

Additional information

Translated from Fizicheskaya Mezomekhanika, 2021, Vol. 24, No. 2, pp. 5–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evstifeev, A.D., Smirnov, I.V. Features of Solid Particle Erosion of Metals. Phys Mesomech 25, 12–17 (2022). https://doi.org/10.1134/S1029959922010027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959922010027

Keywords:

Navigation