Skip to main content
Log in

Autosoliton View of the Seismic Process. Part 2. Possibility of Generation and Propagation of Slow Deformation Autosoliton Disturbances in Geomedia

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

This article has been updated

Abstract

In the autosoliton view, the complete mathematical model of the seismic process taken as the deformation and fracture process of a loaded geomedium combines dynamic equations of solid mechanics and specific constitutive equations for geomedium rheology. These equations describe both the conventional stress-strain evolution due to the stress wave propagation with sound velocities, which are governed by special features of constitutive equations, and slow dynamics of the loaded strong medium. Numerical investigation is given to the generation of deformation autosolitons, front structure, and propagation of intra- and interfault deformation disturbances. Slow deformation disturbances in real geomedium elements are numerically modeled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.

Similar content being viewed by others

Change history

  • 31 August 2021

    Corrected issue title

REFERENCES

  1. Kerner, B.S. and Osipov, V.V., Autosolitons, Phys. Usp., 1989, vol. 32, no. 2, pp. 101–138.

    Article  ADS  Google Scholar 

  2. Vasil’ev, V.A., Romanovskii, Yu.M., and Yakhno, V.G., Autosoliton Processes in Distributed Kinetic Systems, Phys. Usp. 1979, vol. 22, no. 8, pp. 615–639.

  3. Masterov, A.V., Tolkov, V.N., and Yakhno, V.G., Nonlinear Waves: Dynamics and Evolution, New York: Springer-Verlag, 1988.

  4. Schwab, R. and Ruff, V., On the Nature of the Yield Point Phenomenon, Acta Mater., 2013, vol. 61, no. 5, pp. 1798–1808.

    Article  ADS  Google Scholar 

  5. Hallai, J. and Kyriakides, S., On the Effect of Lüders Bands on the Bending of Steel Tubes. Part II: Analysis, Int. J. Solids Struct., 2011, vol. 48, no. 24, pp. 3285–3298.

    Article  Google Scholar 

  6. Romanova, V., Balokhonov, R., and Schmauder, S., Three-Dimensional Analysis of Mesoscale Deformation Phenomena in Welded Low-Carbon Steel, Mater. Sci. Eng. A, 2011, vol. 528, no. 15, pp. 5271–5277.

    Article  Google Scholar 

  7. Johnson, D., Edwards, M., and Chard-Tuckey, P., Microstructural Effects on the Magnitude of Lüders Strains in a Low Alloy Steel, Mater. Sci. Eng. A, 2015, vol. 625, pp. 36–45.

    Article  Google Scholar 

  8. Wilkins, M., Computer Simulation of Dynamic Phenomena, New York: Springer-Verlag, 1999.

  9. Makarov, P.V. and Peryshkin, A.Yu., Slow Motions as Inelastic Strain Autowaves in Ductile and Brittle Media, Phys. Mesomech., 2017, vol. 20, no. 2, pp. 209–221. https://doi.org/10.1134/S1029959917020114

    Article  Google Scholar 

  10. Balokhonov, R., Zinoviev, A., Romanova, V., and Zinovieva, O., The Computational Micromechanics of Materials with Porous Ceramic Coatings, Meccanica, 2016, vol. 51, no. 2, pp. 415–428.

    Article  MathSciNet  Google Scholar 

  11. Smolin, I., Makarov, P., Eremin, M., and Matyko, K., Numerical simulation of Mesomechanical Behavior of Porous Brittle Materials, Proc. Struct. Integr., 2016, vol. 2, pp. 3353–3360.

    Google Scholar 

  12. Eremin, M., Numerical Simulation of Failure of Sandstone Specimens Utilizing the Finite-Difference Continuous Damage Mechanics Approach, Proc. Struct. Integr., 2019, vol. 18, pp. 135–141.

    Google Scholar 

  13. Danilov, V., Gorbatenko, V., Zuev, L., and Orlova, D., Kinetics and Morphology of Lüders Deformation in Specimens with Homogeneous Structure and with a Weld Joint, Mater. Sci. Eng. A, 2018, vol. 714, pp. 160–166.

    Article  Google Scholar 

  14. Barannikova, S., Ponomareva, A.V., Zuev, L.B., Vekilov, Yu.Kh., and Abrikosov, I.A., Significant Correlation between Macroscopic and Microscopic Parameters for the Description of Localized Plastic Flow Auto-Waves in Deforming Alloys, Solid State Commun., 2012, vol. 152, no. 9, pp. 784–787.

    Article  ADS  Google Scholar 

  15. Makarov, P.V., Khon, Yu.A., Peryshkin, A.Yu., Slow Deformation Fronts: Model and Features of Distribution, Geodyn. Tectonophys., 2018, vol. 9, no. 3, pp. 755–769. https://doi.org/10.5800/GT-2018-9-3-0370

    Article  Google Scholar 

  16. Nikolaevskii, V.N., Governing Equation of Plastic Deformation of a Granular Medium, PMM, 1971, vol. 35, no. 6, pp. 1070–1082.

    Google Scholar 

  17. Drucker, D. and Prager, V., Soil Mechanics and Plastic Analysis or Limit Design, Q. Appl. Math., 1952, vol. 10, no. 2, pp. 157–165.

  18. Stefanov, Yu.P. and Bakeev, R.A., Formation of Flower Structures in a Geological Layer at a Strike Slip Displacement in the Basement, Izv. Phys. Solid Earth., 2015, vol. 51, no. 4, pp. 535–547.

    Article  ADS  Google Scholar 

  19. Stefanov, Yu.P. and Tataurova, A.A., Effect of Friction and Strength Properties of the Medium on Shear Band Formation in Thrust Structures, Phys. Mesomech., 2019, vol. 22, no. 6, pp. 463–472. https://doi.org/10.1134/S1029959919060031

    Article  Google Scholar 

  20. Balokhonov, R.R., Romanova, V.A., Martynov, S.A., and Schwab, E.A., Simulation of Deformation and Fracture of Coated Material with Account for Propagation of a Lüders–Chernov Band in The Steel Substrate, Phys. Mesomech., 2013, vol. 16, no. 2, pp. 133–140. https://doi.org/10.1134/S1029959913020045

    Article  Google Scholar 

Download references

Funding

The work is performed at the support of the Russian Science Foundation (Project No. 19-17-00122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Smolin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, P.V., Smolin, I.Y., Khon, Y.A. et al. Autosoliton View of the Seismic Process. Part 2. Possibility of Generation and Propagation of Slow Deformation Autosoliton Disturbances in Geomedia. Phys Mesomech 24, 375–390 (2021). https://doi.org/10.1134/S1029959921040044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959921040044

Keywords:

Navigation