Skip to main content
Log in

Design of Composites with a Specified Set of Physicomechanical Properties Using Three Control Parameters

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Previously, an algorithm based on two control parameters was applied to computer aided design of materials, and here the algorithm is extended to three parameters controlling the effective physicomechanical properties of polymer matrix composites: (i) the average particle size of a polymer powder, (ii) the length of reinforcing fibers, and (iii) the level of fiber–matrix adhesion. The use of these control parameters is dictated by the possibility of their ranging in terms of degrees of influence on effective material characteristics. The algorithm with built-in experimental data is applied to design a composite with specified properties on the example of ultrahigh molecular weight polyethylene reinforced with milled or chopped glass fibers. The form of data presentation shows the whole range of the three parameters which provides the desired result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Chung Deborah, D.L., Composite Materials: Science and Applications, New York: Springer, 2010.

  2. Composite Materials. A Vision for the Future, Nicolais, L., Meo, M., and Milella, E., Eds., London: Springer, 2011.

  3. Bobovich, B.B., Polymer Construction Materials (Structure, Properties, Applications), Moscow: Forum, 2014.

  4. Mikhailin, Yu.A., Structural Polymer Composite Materials, St. Petersburg: Nauch. Osnovy Tekhnol., 2010.

  5. Kerber, M.L., Polymer Composite Materials: Structure, Properties, Technology, St. Petersburg: Professia, 2008.

  6. Kübler, M., Müller, A.K., and Schürmann, H., Kunststoffe, in Dubbel, Grote, K.H., Bender, B., and Göhlich, D., Eds., Berlin: Springer Vieweg, 2018, pp. 275–301.

  7. Pious, C.V. and Sabu, T., Polymeric Materials––Structure, Properties, and Applications, in Printing on Polymers, Izdebska, J. and Sabu, T., Eds., William Andrew Publishing, 2016, pp. 21–39. https://doi.org/10.1016/B978-0-323-37468-2.00002-6

  8. Christensen, R.M., Mechanics of Composite Materials, New York: Wiley, 1979.

  9. Vasiliev, V.V., Mechanics of Structures of Composite Materials, Moscow: Mashinostroenie, 1988.

  10. Benveniste, Y., A New Approach to the Application of Mori–Tanaka Theory in Composite Materials, Mech. Mater., 1987, vol. 6, pp. 147–157.

    Article  Google Scholar 

  11. Panin, V.E., Foundations of Physical Mesomechanics, Phys. Mesomech., 1998, vol. 1, no. 1, pp. 5–20.

    Google Scholar 

  12. Panin, V.E., Methodology of Physical Mesomechanics as a Basis for Model Construction in Computer-Aided Design of Materials, Russ. Phys. J., 1995, vol. 38, pp. 1117–1131. https://doi.org/10.1007/BF00559394X

    Article  Google Scholar 

  13. Kwon, Y.W., Allen, D.H., and Talreja, R.R., Multiscale Modeling and Simulation of Composite Materials and Structures, New York: Springer, 2008.

  14. Markov, K.Z., Elementary Micromechanics of Heterogeneous Media, Heterogeneous Media, in Modeling and Simulation in Science. Engineering and Technology, Markov, K.Z. and Preziosi, L., Eds., Boston: Birkhäuser, 2000.

  15. Qin, Q.H. and Yang, Q.S., Macro-Micro Theory on Multifield Coupling Behavior of Heterogeneous Materials, Berlin: Springer, 2009.

  16. Wang, M. and Pan, N., Predictions of Effective Physical Properties of Complex Multiphase Materials, Mater. Sci. Eng. Rep., 2008, vol. 63, no. 1, pp. 1–30. https://doi.org/10.1016/j.mser.2008.07.001

    Article  Google Scholar 

  17. Böhm, H.J., A Short Introduction to Basic Aspects of Continuum Micromechanics, ILSB Report/ILSB-Arbeitsbericht 206 (supersedes CDL-FMD Report 3-1998), 2015.

  18. Bochkareva, S.A., Grishaeva, N.Yu., Lyukshin, B.A., Lyukshin, P.A., Matolygina, N.Yu., Panin, S.V., and Reutov, Yu.A., A Unified Approach to Determining the Effective Physicomechanical Characteristics of Filled Polymer Composites Based on Variational Principles, Mech. Compos. Mater., 2019, vol. 54, pp. 775–788. https://doi.org/10.1007/s11029-019-9782-8

    Article  ADS  Google Scholar 

  19. Grishaeva, N.Yu., Lyukshin, P.A., Lyukshin, B.A., Panin, S.V., Bochkareva, S.A., Reutov, Yu.A., and Matolygina, N.Yu., Modification of Thermophysical Characteristics of Polymers by Introduction of Microfillers, Mekh. Komposit., Mater. Konstr., 2016, vol. 22, no. 3, pp. 342–361.

  20. Lyukshin, P.A., Grishaeva, N.Yu., Lyukshin, B.A., Panin, S.V., Bochkareva, S.A., Matolygina, N.Yu., and Utsyn, G.E., Calculation of the Electrophysical Properties of Dispersed-Filled Composites, Comput. Continuum Mech., 2017, vol. 10, no. 1, pp. 5–16.

    Article  Google Scholar 

  21. Dudchenko, A.A., Optimal Design of Aircraft Structures from Composite Materials, Moscow: MAI, 2002.

  22. Zinoviev, P.A. and Smerdov, A.A., Optimal Design of Composite Materials, Moscow: Baumann Univ. Press, 2006.

  23. Zhang, J., Wang, J., Lin, J., Guo, Q., Chen, K., and Ma, L., Multiobjective Optimization of Injection Molding Process Parameters Based on Opt LHD, EBFNN, and MOPSO, Int. J. Adv. Manuf. Technol., 2015, vol. 85, pp. 9–12.

    Article  Google Scholar 

  24. Mayda, M., An Efficient Simulation-Based Search Method for Reliability-Based Robust Design Optimization of Mechanical Components, Mechanika, 2017, vol. 23, no. 5, pp. 696–702.

    Article  Google Scholar 

  25. Afonin, P.V., Optimization System Based on Simulation Modelling, Genetic Algorithm, and Neuron Metamodels, in Proc. Int. Conf. KnowledgeDialogueSolutions, Varna, Bulgaria, 2007. conf/ITA2007/KDS2007/PDF/KDS07-Afonin.pdf

  26. Ibrahim, M.H.I., Muhamad, N., Sulong, A.B., Jamaludin, K.R., Nor, N.H.M., Ahmad, S., and Zakaria, H., Parameter Optimization Towards Highest Micro MIM Density by Using Taguchi Method, Key Eng. Mater., 2010, vol. 443, pp. 705–710.

    Article  Google Scholar 

  27. Jou, Y-T., Lin, W-T., Lee, W-C., and Yeh, T-M., Integrating the Taguchi Method and Response Surface Methodology for Process Parameter Optimization ofthe Injection Molding, Appl. Math. Inform. Sci., 2014, vol. 8, no. 3, pp. 1277–1285.

    Article  Google Scholar 

  28. Anokhina, N.Yu., Matolygina, N.Yu., Lyukshin, B.A., and Lyukshin, P.A., Computer Aided Design of a Filled Polymer Composition with Required Strain-Stress Properties, Mekh. Mater. Kompoz. Constr., 2009, vol. 15, no. 4, pp. 600–609.

    Google Scholar 

  29. Bochkareva, S.A., Grishaeva, N.Yu., Lyukshin, B.A., Lyukshin, P.A., Matolygina, N.Yu., and Panov, I.L., Obtaining of Specified Effective Mechanical, Thermal, and Electrical Characteristics of Composite Filled with Dispersive Materials, Inorg. Mater. Appl. Res., 2017, vol. 8, no. 5, pp. 651–661.

    Article  Google Scholar 

  30. Panin, S.V., Grishaeva, N.Yu., Lyukshin, P.A., Lyukshin, B.A., Panov, I.L., Bochkareva, S.A., Matolygina, N.Yu., and Aleksenko, V.O., Receiving the Recipe of the Compositions Based on UHMWPE with the Assigned Properties, Inorg. Mater. Appl. Res., 2019, vol. 10, pp. 299–304.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Bochkareva.

Additional information

Translated from in Fizicheskaya Mezomekhanika, 2020, Vol. 23, No. 4, pp. 43–50.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochkareva, S.A., Grishaeva, N.Y., Lyukshin, B.A. et al. Design of Composites with a Specified Set of Physicomechanical Properties Using Three Control Parameters. Phys Mesomech 24, 196–201 (2021). https://doi.org/10.1134/S1029959921020090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959921020090

Keywords:

Navigation