Skip to main content
Log in

Two-Level Elastoviscoplastic Model: An Application to the Analysis of Grain Structure Evolution under Static Recrystallization

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Multilevel modeling of structural evolution in polycrystals, which determines the macroscopic material properties, is currently one of the central research problems. The defect and grain/subgrain structure of polycrystalline materials changes greatly during thermomechanical processing. The grain structure is significantly affected by recrystallization, which leads to the formation of slightly defective recrystallization nuclei and their subsequent growth due to the absorption of more defective neighboring grains. This paper is aimed to develop a mathematical model for describing the behavior of polycrystalline materials during plastic deformation and subsequent heating to recrystallization temperatures. The main task is to describe grain structure evolution in polycrystals during this process. The considered recrystallization mechanism is based on the displacement of original grain boundary segments. As a result of preliminary cold plastic deformation, energy accumulates at defects (primarily dislocations) in neighboring grains. The energy difference between neighboring grains is the main driving force of grain boundary migration. When the recrystallized grain grows, the extent of the new high-angle boundary increases; the amount of energy expended for the boundary formation must be smaller than the decrease in the stored energy due to defect elimination. The subgrains adjacent to the grain boundary are the recrystallization nuclei in the considered deformation mechanism. They start to grow into the more defective grain when the Bailey-Hirsch criterion is satisfied. This study deals with polycrystalline materials with low stacking fault energy for which the effect of heating on the subgrain structure is insignificant. The energy stored in grains and subgrains is calculated using a two-level statistical model that considers individual grains and subgrains. Plastic deformation is assumed to occur through edge dislocation glide. A method is proposed for isolating flat boundary regions (facets) of new (recrystallized) grains, based on minimizing the grain boundary energy in the vicinity of the new boundary. This approach describes some experimentally observed recrystallization effects, such as the elongation of recrystallized grains in the initial recrystallization direction and the appearance of grain boundary facets that allow for boundary mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaafarani, N., Raabe, D., Singh, R.N., Roters, F., and Zaefferer, S., Three-Dimensional Investigation of the Texture and Microstructure below a Nanoindent in a Cu Single Crystal Using 3D EBSD and Crystal Plasticity Finite Element Simulations, Acta Mater., 2006, vol. 54, no. 7, pp. 1863–1876.

    Article  Google Scholar 

  2. Schuren, J.C., Shade, P.A., Bernier, J.V., Shiu, F.L., Blank, B., Lind, J., Kenesei, P., Lienert, U., Suter, R.M., Turner, T.J., Dimiduk, D.M., and Alme, J., New Opportunities for Quantitative Tracking of Polycrystal Responses in Three Dimensions, Current Opinion Solid State Mater. Sci., 2015, vol. 19, no. 4, pp. 235–244.

    Article  ADS  Google Scholar 

  3. Thompson, C.V., Structure Evolution during Processing of Polycrystalline Films, Ann. Rev. Mater. Sci., 2000, vol. 30, no. 1, pp. 159–190.

    Article  ADS  Google Scholar 

  4. Valiev, R.Z. and Langdon, T.G., Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, vol. 51, no. 7, pp. 881–981.

    Article  Google Scholar 

  5. Zhilyaev, A.P. and Langdon, T.G., Using High-Pressure Torsion for Metal Processing: Fundamentals and Applications, Prog. Mater. Sci., 2008, vol. 53, no. 6, pp. 893–979.

    Article  Google Scholar 

  6. Azushima, A., Kopp, R., Korhonen, A., Yang, D.Y., Micari, F., Lahoti, G.D., Groche, P., Yanagimoto, J., Tsuji, N., Rosochowski, A., and Yanagida, A., Severe Plastic Deformation (SPD) Processes for Metals, CIRP Ann. Manuf. Technol., 2008, vol. 57, no. 2, pp. 716–735.

    Article  Google Scholar 

  7. Storozhev, M.V. and Popov, E.A., Theory of Metal Forming, Moscow: Mashinostroyeniye, 1977.

    Google Scholar 

  8. Kaibyshev, O.A., Superplasticity of Commercial Alloys, Moscow: Metallurgiya, 1984.

    Google Scholar 

  9. Lakhtin, Yu.M., Engineering Physical Metallurgy and Heat-Treatment, Moscow: Mir Publishers, 1979.

    Google Scholar 

  10. Rollett, A., Humphreys, F.J., Rohrer, G.S., and Hatherly, M., Recrystallization and Related Annealing Phenomena, Oxford: Elsevier, 2004.

    Google Scholar 

  11. Gorelik, S.S., Dobatkin, S.V., and Kaputkina, L.M., Recrystallization of Metals and Alloys, Moscow: MISIS, 2005.

    Google Scholar 

  12. Biront, V.S., Theory of Heat Treatment of Metals, Krasnoyarsk: ITsMiZ, 2007.

    Google Scholar 

  13. Lakhtin, Yu.M. and Leontyeva, V.P., Materials Science and Engineering, Moscow: Mashinostroyeniye, 1980.

    Google Scholar 

  14. Trusov, P.V. and Kondratev, N.S., Nucleation Recrystallization Mechanisms in Metals at Thermomechanical Processing, PNRPUMech. Bull., 2016, no. 4, pp. 151–174. doi https://doi.org/10.15593/perm.mech/2016.4.09

  15. Beck, P.A. and Sperry, P.R., Strain Induced Grain Boundary Migration in High Purity Aluminum, J. Appl. Phys., 1950, vol. 21, no. 2, pp. 150–152.

    Article  ADS  Google Scholar 

  16. Kronberg, M.L. and Wilson, F.H., Secondary Recrystallization in Copper, Metals Trans., 1949, vol. 185, pp. 501–514.

    Google Scholar 

  17. Aust, K.T. and Rutter, J.W., Grain Boundary Migration in High-Purity Lead and Dilute Lead-Tin Alloys, Trans. Am. Inst. Mining Metallurg. Eng., 1959, vol. 215, no. 1, pp. 119–127.

    Google Scholar 

  18. Gottstein, G. and Shvindlerman, L.S., On the Orientation Dependence of Grain Boundary Migration, Scripta Metallurg. Mater., 1992, vol. 27, no. 11, pp. 1515–1520.

    Article  Google Scholar 

  19. Miodownik, M.A., A Review of Microstructural Computer Models Used to Simulate Grain Growth and Recrystallisation in Aluminium Alloys, J. Light Met., 2002, vol. 2, no. 3, pp. 125–135.

    Article  Google Scholar 

  20. Tan, K., Li, J., Guan, Z., Yang, J., and Shu, J., The Identification of Dynamic Recrystallization and Constitutive Modeling during Hot Deformation of Ti55511 Titanium Alloy, Mater. Design, 2015, vol. 84, pp. 204–211.

    Article  Google Scholar 

  21. Quan, G.Z., Luo, G.C., Liang, J.T., Wu, D.S., Mao, A., and Liu, Q., Modelling for the Dynamic Recrystallization Evolution of Ti-6Al-4V Alloy in Two-Phase Temperature Range and a Wide Strain Rate Range, Comput. Mater. Sci., 2015, vol. 97, pp. 136–147.

    Article  Google Scholar 

  22. Pan, Z., Liang, S.Y., Garmestani, H., and Shih, D.S., Prediction of Machining-Induced Phase Transformation and Grain Growth of Ti-6Al-4 V Alloy, Int. J. Adv. Manuf. Technol., 2016, vol. 87, no. 1–4, pp. 859–866.

    Article  Google Scholar 

  23. Mahin, K.W., Hanson, K., and Morris, J.W., Comparative Analysis of the Cellular and Johnson-Mehl Microstructures through Computer Simulation, Acta Metallurg., 1980, vol. 28, no. 4, pp. 443–453.

    Article  Google Scholar 

  24. Vandermeer, R.A. and Rath, B.B., Modeling Recrystallization Kinetics in a Deformed Iron Single Crystal, Metallurg. Trans. A, 1989, vol. 20, no. 3, pp. 391–401.

    Article  ADS  Google Scholar 

  25. Vandermeer, R.A. and Jensen, D.J., Microstructural Path and Temperature Dependence of Recrystallization in Commercial Aluminum, Acta Mater., 2001, vol. 49, no. 11, pp. 2083–2094.

    Article  Google Scholar 

  26. Lin, F., Zhang, Y., Tao, N., Pantleon, W., and Jensen, D.J., Effects of Heterogeneity on Recrystallization Kinetics of Nanocrystalline Copper Prepared by Dynamic Plastic Deformation, Acta Mater., 2014, vol. 72, pp. 252–261.

    Article  Google Scholar 

  27. Summers, P.T., Mouritz, A.P., Case, S.W., and Lattimer, B.Y., Microstructure-Based Modeling of Residual Yield Strength and Strain Hardening after Fire Exposure of Aluminum Alloy 5083-H116, Mater. Sci. Eng. A, 2015, vol. 632, pp. 14–28.

    Article  Google Scholar 

  28. Raabe, D., Cellular Automata in Materials Science with Particular Reference to Recrystallization Simulation, Ann. Rev. Mater. Res., 2002, vol. 32, no. 1, pp. 53–76.

    Article  Google Scholar 

  29. Janssens, K.G.F., Random Grid, Three-Dimensional, Space-Time Coupled Cellular Automata for the Simulation of Recrystallization and Grain Growth, Model. Simul. Mater. Sci. Eng., 2003, vol. 11, no. 2, pp. 157–171.

    Article  ADS  Google Scholar 

  30. Kugler, G. and Turk, R., Study of the Influence of Initial Microstructure Topology on the Kinetics of Static Recrystallization Using a Cellular Automata Model, Comput. Mater. Sci., 2006, vol. 37, no. 3, pp. 284–291.

    Article  Google Scholar 

  31. Liu, Z., Olivares, R.O., Lei, Y., Garcia, C.I., and Wang, G., Microstructural Characterization and Recrystallization Kinetics Modeling of Annealing Cold-Rolled Vanadium Microalloyed HSLA Steels, J. Alloy. Compound., 2016, vol. 679, pp. 293–301.

    Article  Google Scholar 

  32. Mellbin, Y., Hallberg, H., and Ristinmaa, M., A Combined Crystal Plasticity and Graph-Based Vertex Model of Dynamic Recrystallization at Large Deformations, Model. Simul. Mater. Sci. Eng., 2015, vol. 23, no. 4, p. 045011. doi https://doi.org/10.1088/0965-0393/23/4/045011

    Article  ADS  Google Scholar 

  33. Chen, L.Q., A Novel Computer Simulation Technique for Modeling Grain Growth, Scripta Metallurg. Mater., 1995, vol. 32, no. 1, pp. 115–120.

    Article  ADS  Google Scholar 

  34. Chen, L., Chen, J., Lebensohn, R.A., Ji, Y.Z., Heo, T.W., Bhattacharyya, S., Chang, K., Mathaudhu, S., Liu, Z.K., and Chen, L.Q., An Integrated Fast Fourier Transform-Based Phase-Field and Crystal Plasticity Approach to Model Recrystallization of Three Dimensional Polycrystals, Comp. Meth. Appl. Mech. Eng., 2015, vol. 285, pp. 829–848.

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhao, H.K., Chan, T., Merriman, B., and Osher, S., A Variational Level Set Approach to Multiphase Motion, J. Comput. Phys., 1996, vol. 127, no. 1, pp. 179–195.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Bernacki, M., Chastel, Y., Coupez, T., and Loge, R.E., Level Set Framework for the Numerical Modelling of Primary Recrystallization in Polycrystalline Materials, Scripta Mater., 2008, vol. 58, no. 12, pp. 1129–1132.

    Article  Google Scholar 

  37. Bernacki, M., Resk, H., Coupez, T., and Loge, R.E., Finite Element Model of Primary Recrystallization in Polycrystalline Aggregates Using a Level Set Framework, Model. Simul. Mater. Sci. Eng., 2009, vol. 17, no. 6, p. 064006.

    Article  ADS  Google Scholar 

  38. Hallberg, H., A Modified Level Set Approach to 2D Modeling of Dynamic Recrystallization, Model. Simul. Mater. Sci. Eng., 2013, vol. 21, no. 8, pp. 085012.

    Article  ADS  Google Scholar 

  39. Scholtes, B., Shakoor, M., Bozzolo, N., Bouchard, P.O., Settefrati, A., and Bernacki, M., Advances in Level-Set Modeling of Recrystallization at the Polycrystal Scale—Development of the Digi-µ Software, Key Eng. Mater. Trans. Tech. Publ., 2015, vol. 651, pp. 617–623.

    Article  Google Scholar 

  40. Rollett, A.D., Overview of Modeling and Simulation of Recrystallization, Prog. Mater. Sci., 1997, vol. 42, no. 1–4, pp. 79–99.

    Article  Google Scholar 

  41. Raabe, D. and Becker, R.C., Coupling of a Crystal Plasticity Finite-Element Model with a Probabilistic Cellular Automaton for Simulating Primary Static Recrystallization in Aluminium, Model. Simul. Mater. Sci. Eng., 2000, vol. 8, no. 4, pp. 445–462.

    Article  ADS  Google Scholar 

  42. Andrietti, S., Chenot, J.L., Bernacki, M., Bouchard, P.O., Fourment, L., Hachem, E., and Perchat, E., Recent and Future Developments in Finite Element Metal Forming Simulation, Comp. Meth. Mater. Sci., 2015, vol. 15, no. 2, pp. 265–293.

    Google Scholar 

  43. Asaro, R.J., Crystal Plasticity, J. Appl. Mech. B, 1983, vol. 50, no. 4, pp. 921–934.

    Article  ADS  MATH  Google Scholar 

  44. Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., and Raabe, D., Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications, Acta Mater., 2010, vol. 58, no. 4, pp. 1152–1211.

    Article  Google Scholar 

  45. Trusov, P.V., Volegov, P.S., and Kondratyev, N.S., Crystal Plasticity Theories, Perm: Izd-vo PNIPU, 2013.

    Google Scholar 

  46. Trusov, P.V. and Shveykin, A.I., Multilevel Crystal Plasticity Models of Single- and Polycrystals. Statistical Models, Phys. Mesomech., 2013, vol. 16, no. 1, pp. 23–33.

    Article  Google Scholar 

  47. Trusov, P.V., Sharifullina, E.R., and Shveykin, A.I., Three-Level Modeling of FCC Polycrystalline Inelastic Deformation: Grain Boundary Sliding Description, IOP Conf. Mater. Sci. Eng., 2015, vol. 71, p. 012081. doi https://doi.org/10.1088/1757-899X/71/1/012081

    Article  Google Scholar 

  48. Trusov, P.V. and Shveykin, A.I., Multilevel Crystal Plasticity Models of Single- and Polycrystals. Direct Models, Phys. Mesomech., 2013, vol. 16, no. 2, pp. 99–124.

    Article  Google Scholar 

  49. Trusov, P.V. and Shveykin, A.I., On Motion Decomposition and Constitutive Relations in Geometrically Nonlinear Elastoviscoplasticity of Crystallites, Phys. Mesomech., 2017, vol. 20, no. 4, pp. 377–391.

    Article  Google Scholar 

  50. Lee, E.H., Elastic Plastic Deformation at Finite Strain, ASME J. Appl. Mech., 1969, vol. 36, pp. 1–6.

    Article  ADS  MATH  Google Scholar 

  51. Shveikin, A.I. and Trusov, P.V., Correlation between Geometrically Nonlinear Elastoviscoplastic Constitutive Relations Formulated in Terms of the Actual and Unloaded Configurations for Crystallites, Phys. Mesomech., 2018, vol. 21, no. 3, pp. 193–202.

    Article  Google Scholar 

  52. Trusov, P.V., Shveikin, A.I., and Yanz, A.Yu., Motion Decomposition, Frame-Indifferent Derivatives, and Constitutive Relations at Large Displacement Gradients from the Viewpoint of Multilevel Modeling, Phys. Mesomech., 2017, vol. 20, no. 4, pp. 357–376.

    Article  Google Scholar 

  53. Rosakis, P., Rosakis, A.J., Ravichandran, G., and Hodowany, J., A Thermodynamic Internal Variable Model for the Partition of Plastic Work into Heat and Stored Energy in Metals, J. Mech. Phys. Solids, 2000, vol. 48, no. 3, pp. 581–607.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Sedov, L.I., A Course in Continuum Mechanics, Groningen: Wolters-Noordhoff, 1971.

    MATH  Google Scholar 

  55. Honeycombe, R.W.K., The Plastic Deformation of Metals, London-Baltimore: E. Arnold, 1984.

    Google Scholar 

  56. Titchener, A.L. and Bever, M.B., The Stored Energy of Cold Work, Prog. Met. Phys., 1958, vol. 7, pp. 247–338.

    Article  Google Scholar 

  57. Plekhov, O.A., Structural and Kinetic Mechanisms of Deformation and Fracture of Coarse-Grained and Submicrocrystalline Materials, Doct. Degree Thesis (Phys. & Math.), Perm: IMSS UrO RAN, 2009.

    Google Scholar 

  58. Bellier, S.P. and Doherty, R.D., The Structure of Deformed Aluminium and Its Recrystallization—Investigations with Transmission Kossel Diffraction, Acta Metallurg., 1977, vol. 25, no. 5, pp. 521–538.

    Article  Google Scholar 

  59. Williamson, G.K. and Smallman, R.E., III. Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the X-Ray Debye-Scherrer Spectrum, Philos. Mag., 1956, vol. 1, no. 1, pp. 34–46.

    Article  ADS  Google Scholar 

  60. Cahn, R.W., A New Theory of Recrystallization Nuclei, Proc. Phys. Soc. Lond., 1950, vol. 63, pp. 323–336.

    Article  ADS  Google Scholar 

  61. Bailey, J.E. and Hirsch, P.B., The Recrystallization Process in Some Polycrystalline Metals, Proc. Roy. Soc. Lond. A. Math. Phys. Eng. Sci., 1962, vol. 267, no. 1328, pp. 11–30.

    Article  ADS  Google Scholar 

  62. Kondratev, N.S. and Trusov, P.V., Calculation of the Intergranular Energy in Two-Level Physical Models for Describing Thermomechanical Processing of Polycrystals with Account for Discontinuous Dynamic Recrystallization, Nanomech. Sci. Technol. Int. J., 2016, vol. 7, pp. 107–122.

    Article  Google Scholar 

  63. Kozlov, E.V., Trishkina, L.I., Popova, N.A., and Koneva, N.A., Dislocation Physics in the Multilevel Approach to Plastic Deformation, Phys. Mesomech., 2011, vol. 14, no. 5–6, pp. 283–296.

    Article  Google Scholar 

  64. Trusov, P.V. and Kondratev, N.S., Description of Inelastic Deformation of Two-Phase Polycrystalline Materials, Deform. Razrush. Mater., 2013, no. 6, pp. 8–15.

    Google Scholar 

  65. Burke, J.E. and Turnbull, D., Recrystallization and Grain Growth, Prog. Met. Phys., 1952, vol. 3, pp. 220–244.

    Article  Google Scholar 

  66. Kondratev, N.S., Trusov, P.V., and Bazhenov, V.G., Influence of Grains Orientation on the Migration Velocity of High-Angle Boundaries, Nanomech. Sci. Technol. Int. J., 2017, vol. 8, pp. 243–259.

    Article  Google Scholar 

  67. Rae, C.M.F. and Smith, D.A., On the Mechanisms of Grain Boundary Migration, Philos. Mag. A, 1980, vol. 41, no. 4, pp. 477–492.

    Article  ADS  Google Scholar 

  68. Kondratev, N.S. and Trusov, P.V., Disorientation Measure of Neighboring Crystallites Slip Systems in a Polycrystalline Aggregate, PNRPU Mech Bull., 2012, no. 2, pp. 112–127.

    Google Scholar 

  69. Kondratev, N.S. and Trusov, P.V., Description of Hardening Slip Systems due to the Boundaries of the Crystallines in a Polycrystalline Aggregate, PNRPU Mech. Bull., 2012, no. 3, pp. 78–97.

  70. Rybin, V.V., High Plastic Strains and Fracture of Metals, Moscow: Metallurgiya, 1986.

    Google Scholar 

  71. Hurley, P.J. and Humphreys, F.J., The Application of EBSD to the Study of Substructural Development in a Cold Rolled Single-Phase Aluminium Alloy, Acta Mater., 2003, vol. 51, no. 4, pp. 1087–1102.

    Article  Google Scholar 

  72. Theyssier, M.C. and Driver, J.H., Recrystallization Nucleation Mechanism along Boundaries in Hot Deformed Al Bicrystals, Mater Sci. Eng. A, 1999, vol. 272, no. 1, pp. 73–82.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Trusov.

Additional information

Russian Text © The Author(s), 2018, published in Fizicheskaya Mezomekhanika, 2018, Vol. 21, No. 2, pp. 21–32.

Funding

The work was carried out with the financial support of RFBR in the framework of research project No. 16-31-60002 mol_a_dk, and the RF Ministry of Education and Science (the basic part of the state task for PNRPU, No. 9.7434.2017/8.9).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trusov, P.V., Kondratyev, N.S. Two-Level Elastoviscoplastic Model: An Application to the Analysis of Grain Structure Evolution under Static Recrystallization. Phys Mesomech 22, 230–241 (2019). https://doi.org/10.1134/S1029959919030081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959919030081

Keywords

Navigation