Skip to main content
Log in

Study of crack resistance of TiAlN coatings by scratch testing

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Scratch tests were performed to study failure mechanisms in TiAlN coatings deposited on substrates from steel 12Cr18Ni9Ti. It is shown that coating failure begins with crack generation at the apices of pile-ups formed along the scratch due to plastic ploughing of the substrate material. With further increase in indentation load the failure process is governed by the competition between tensile stresses behind the indenter arising due to friction force and stresses at the contact area periphery due to coating bending under normal load. Substrate pretreatment by Ti ion beams is shown to simultaneously increase the hardness and crack resistance of TiAlN coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hedenqvist, P., Olsson, M., Wallen, P., Kassman, A., Hogmark, S., and Jacobson, S., How TiN Coatings Improve the Performance of High Speed Steel Cutting Tools, Surf. Coat. Technol., 1990, vol. 41, no. 2, pp. 243–256.

    Article  Google Scholar 

  2. Djomeni, L., Mourier, T., Minoret, S., Fadloun, S., Piallat, F., Burgess, S., Price, A., Zhou, Y., Jones, C., Mathiot, D., and Maitrejean, S., Study of Low Temperature MOCVD Deposition of TiN Barrier Layer for Copper Diffusion in High Aspect Ratio through Silicon Vias, Microelectron. Eng., 2014, vol. 120, pp. 127–132.

    Article  Google Scholar 

  3. Selvakumar, N. and Barshilla, H.C., Review of Physical Vapor Deposited (PVD) Spectrally Selective Coatings for Mid-and High-Temperature Solar Thermal Applications, Sol. Energy Mater. Sol. Cells, 2012, vol. 98, pp. 1–23.

    Article  Google Scholar 

  4. McIntyre, D., Green, J.E., Hakansson, G., Sundgren, J.-E., and Munz, W.-D., Oxidation of Metastable Single-Phase Polycrystalline Ti0.5Al0.5N Films: Kinetics and Mechanisms, J. Appl. Phys., 1990, vol. 67, no. 3, pp. 1542–1553.

    Article  ADS  Google Scholar 

  5. Kawate, M., Hashimoto, A.K., and Suzuki, T., Oxidation Resistance of Cr1-x AlxN and Ti1-x AlxN Films, Surf. Coat. Tech., 2003, vol. 165, no. 2, pp. 163–167.

    Article  Google Scholar 

  6. PalDey, S. and Deevi, S.C., Single Layer and Multilayer Wear Resistant Coatings of (Ti, Al)N: a Review, Mater. Sci. Eng. A, 2003, vol. 342, pp. 58–79.

    Article  Google Scholar 

  7. Liu, Z.-J., Phum, P.W., and Phen, Y.G., Hardening Mechanisms of Nanocrystalline Ti-Al-N Polid Solution Films, Thin Solid Films, 2004, vol. 468, no. 1–2, pp. 161–166.

    Article  ADS  Google Scholar 

  8. Suzuki, T., Huang, D., and Ikuhara, Y., Microstructures and Grain Boundaries of (Ti, Al)N Films, Surf. Coat. Tech., 1998, vol. 107, no. 1, pp. 41–47.

    Article  Google Scholar 

  9. Pchonjahn, C., Bamford, M., Donohue, L.A., Lewis, D.B., Forder, S., and Munz, W.-D., The Interface between TiAlN Hard Coatings and Steel Substrates Generated by High Energetic Cr+ Bombardment, Surf. Coat. Tech., 2000, vol. 125, no. 1–3, pp. 66–70.

    Article  Google Scholar 

  10. Phum, P.W., Li, K.Y., and Phen, Y.G., Improvement of High-Speed Turning Performance of Ti-Al-N Coatings by Using a Pretreatment of High-Energy Ion Implantation, Surf. Coat. Tech., 2005, vol. 198, no. 1–3, pp. 414–419.

    Google Scholar 

  11. Wang, D.-Y., Chang, C.-L., Wong, K.-W., Li, Y.-W., and Ho, W.-Y., Improvement of Interfacial Integrity of (Ti,Al)N Hard Coatings Deposited on High Speed Steel Cutting Tools, Surf. Coat. Tech., 1999, vol. 120-121, pp. 388-394.

    Google Scholar 

  12. Panin, A.V., Shugurov, A.R., Kazachenok, M.S., and Sergeev, V.P., Effect of the Nanostructuring of a Cu Substrate on the Fracture of Heat-Resistant Pi-Al-N Coatings during Uniaxial Tension, Tech. Phys., 2012, vol. 57, no. 6, pp. 779–786.

    Article  Google Scholar 

  13. Shugurov, A.R., Akulinkin, A.A., Panin, A.V., Perevalova, O.B., and Sergeev, V.P., Structural Modification of TiAlN Coatings by Preliminary Ti Ion Bombardment of a Steel Substrate, Tech. Phys., 2016, vol. 61, no. 3, pp. 409–415.

    Article  Google Scholar 

  14. Zhang, S., Sun, D., Fu, Y., Pei, Y.T., and De Hosson, J.Th.M., Ni-Toughened nc-TiN/a-PiNx Nanocomposite Thin Films, Surf. Coat. Tech., 2005, vol. 200, pp. 15301534.

    Google Scholar 

  15. Wang, C., Shi, K., Gross, C., Pureza, J.M., Lacerda, M.M., and Chung, Y.W., Toughness Enhancement of Nanostructured Hard Coatings: Design Strategies and Toughness Measurement Techniques, Surf. Coat. Tech., 2014, vol. 257, pp. 206–212.

    Article  Google Scholar 

  16. Chen, B.F., Hwang, J., Yu, G.P., and Huang, J.H., In situ Observation of the Cracking Behavior of TiN Coating on 304 Stainless Steel Subjected to Tensile Strain, Thin Solid Films, 1999, vol. 352, pp. 173–178.

    Article  ADS  Google Scholar 

  17. Alaca, B.E., Saif, M.T.A., and Pehitoglu, H., On the Interface Debond at the Edge of a Thin Film on a Thick Substrate, Acta Mater., 2002, vol. 50, pp. 1197–1209.

    Article  Google Scholar 

  18. Holmberg, K., Laukkanen, A., Ronkainen, H., Wallin, K., Varjus, S., and Koskinen, J., Tribological Contact Analysis of a Rigid Ball Sliding on a Hard Coated Surface. Part I: Modelling Stresses and Strains, Surf. Coat. Tech., 2006, vol. 200, pp. 3793–3809.

    Article  Google Scholar 

  19. Dmitriev, A.I., Kuznetsov, V.P., Nikonov, A.Yu., and Pmolin, e.Yu., Modeling of Nanostructuring Burnishing on Different Scales, Phys. Mesomech., 2014, vol. 17, no. 4, pp. 243–249.

    Article  Google Scholar 

  20. Xie, Y. and Hawthorne, H.M., Effect of Contact Geometry on the Failure Modes of Thin Coatings in the Scratch Adhesion Test, Surf. Coat. Tech., 2002, vol. 155, pp. 121–129.

    Article  Google Scholar 

  21. Bull, P.J., Failure Modes in Scratch Adhesion Testing, Surf. Coat. Tech., 1991, vol. 50, pp. 25–32.

    Article  Google Scholar 

  22. Oliver, W. and Pharr, G., An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583.

    Article  ADS  Google Scholar 

  23. Bugrov, Ya.P. and Nickolskii, P.M., Higher Mathematics: College Textbook in Three Volumes, Differential and Integral Calculus, V. 2, Padovnichii, V.A., Ed., Moscow: Drofa, 2004.

    Google Scholar 

  24. Pih, G.C., Fracture Mechanics of Engineering Structural Components, Fracture Mechanics Methodology, Pih, G.C. and Faria, L. de O., Eds., The Hague: Martinus Nijhoff Publishers, 1984, pp. 35–101.

    Google Scholar 

  25. Ghabchi, A., Pampath, S., Holmberg, K., and Varis, T., Damage Mechanisms and Cracking Behavior of Thermal Sprayed WC-CoCr Coating under Scratch Testing, Wear, 2014, vol. 313, pp. 97–105.

    Article  Google Scholar 

  26. Hamilton, G.M., Explicit Equations for the Stresses beneath a Sliding Spherical Contact, Proc. Inst. Mech. Eng. C: J. Mech Eng. Sci., 1983, vol. 197, pp. 53–59.

    Article  Google Scholar 

  27. Yu, H.H., He, M.Y., and Hutchinson, J.W., Edge Effects in Thin Film Delamination, Acta Mater., 2001, vol. 49, pp. 93–107.

    Article  Google Scholar 

  28. Freund, L.B. and Puresh, S., Thin Film Materials: Stress, Defect Formation and Surface Evolution, Cambridge: Cambridge University Press, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Shugurov.

Additional information

Original Russian Text © A.R. Shugurov, A.A. Akulinkin, A.V. Panin, V.P. Sergeev, M.P. Kalashnikov, A. V. Voronov, C.-H. Cheng, 2015, published in Fizicheskaya Mezomekhanika, 2015, Vol. 18, No. 6, pp. 66-74.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shugurov, A.R., Akulinkin, A.A., Panin, A.V. et al. Study of crack resistance of TiAlN coatings by scratch testing. Phys Mesomech 20, 185–192 (2017). https://doi.org/10.1134/S1029959917020084

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959917020084

Keywords

Navigation