Skip to main content
Log in

Damage and fracture: Crystal plasticity models

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

This paper completes the review of recent (last 15 years) publications on experimental and theoretical methods and approaches for studying damage accumulation and fracture in crystalline solids. It summarizes the works that describe damage and fracture using an approach based on crystal plasticity. These works study the propagation of trans- and intergranular cracks, microvoid nucleation and evolution in two-phase steel specimens, crack growth in low- and high-cycle fatigue, and analyze the deformation behavior of various materials under high radiation that strongly affects mechanical properties. Much attention is given to the papers on the numerical implementation of crystal plasticity models, particularly, modifications of finite element models used in application packages for damage and fracture description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trusov, P.V. and Volegov, P.S., Crystal Plasticity Theories and Their Applications to the Description of Inelastic Deformations of Materials. Part 1: Rigid-Plastic and Elastoplastic Theories, PNRPU Mech. Bull., 2011, no. 1, pp. 545.

    Google Scholar 

  2. Trusov, P.V. and Volegov, P.S., Crystal Plasticity Theories and Their Applications to the Description of Inelastic Deformations of Materials. Part 2: Viscoplastic and Elastoviscoplastic Theories, PNRPU Mech. Bull., 2011, no. 2, pp. 101–131.

    Google Scholar 

  3. Trusov, P.V. and Volegov, P.S., Crystal Plasticity Theories and Their Applications to the Description of Inelastic Deformations of Materials. Part 3: Hardening Theories, Gradient Theories, PNRPU Mech. Bull., 2011, no. 3, pp. 146197.

    Google Scholar 

  4. Panin, V.E., Likhachev, V.A., and Grinyaev, Yu.V., Structural Levels of Deformation in Solids, Novosibirsk: Nauka, 1985.

    MATH  Google Scholar 

  5. Structural Levels of Plastic Deformation and Fracture, Panin, V.E., Ed., Novosibirsk: Nauka, 1990.

  6. Physical Mesomechanics of Heterogeneous Media and Computer-Aided Design of Materials, Panin, V.E., Ed., Cambridge: Cambridge Interscience Publishing, 1998.

  7. Panin, V.E., Methodology of Physical Mesomechanics as the Basis for Model Construction of Computer-Aided Design of Materials, Russ. Phys. J., 1995, no. 11, pp. 11171131.

    Google Scholar 

  8. Panin, V.E., Foundations of Physical Mesomechanics, Phys. Mesomech., 1998, vol. 1, no. 1, pp. 5–22.

    Google Scholar 

  9. Panin, V.E. and Grinyaev, Yu.V., Structural Levels of Deformation in Solids, Izv. Vuzov. Fizika, 1992, no. 6, pp. 527.

    Google Scholar 

  10. Panin, V.E. and Grinyaev, Yu.V., Physical Mesomechanics: A New Paradigm at the Interface of Solid State Physics and Solid Mechanics, Phys. Mesomech., 2003, vol. 6, no. 4, pp. 7–32.

    Google Scholar 

  11. Panin, V.E. and Egorushkin, V.E., Curvature Solitons as Generalized Structural Wave Carriers of Plastic Deformation and Fracture, Phys. Mesomech., 2013, vol. 16, no. 3, pp. 267–286.

    Article  Google Scholar 

  12. Panin, V.E., Panin, A.V., Elsukova, T.F., and Popkova, Yu.F., Fundamental Role of Crystal Structure Curvature in Plasticity and Strength of Solids, Phys. Mesomech., 2015, vol. 18, no. 2, pp. 89–99.

    Article  Google Scholar 

  13. Egorushkin, V.E. and Panin, V.E., Physical Foundations of Nonlinear Fracture Mechanics, Mech. Solid., 2013, vol. 48, no. 5, pp. 525–536.

    Article  ADS  Google Scholar 

  14. Panin, V.E., Fracture Mesomechanics of a Solid as a Nonlinear Hierarchically Organized System [online resource], Proc. Conf. Fracture 19, Kazan, Russia, 2012, Kazan: Kazan Sci. Center RAS, 2012.

    Google Scholar 

  15. Kysar, J.W., Continuum Simulations of Directional Dependence of Crack Growth along a Copper/Sapphire Bicrystal Interface. Part I: Experiments and Crystal Plasticity Background, J. Mech. Phys. Solid., 2001, vol. 49, pp. 1099–1128.

    Article  ADS  MATH  Google Scholar 

  16. Kysar, J.W., Continuum Simulations of Directional Dependence of Crack Growth along a Copper/Sapphire Bicrystal Interface. Part II: Crack Tip Stress/Deformation Analysis, J. Mech. Phys. Solid., 2001, vol. 49, pp. 11291153.

    MATH  Google Scholar 

  17. Trusov, P.V. and Shveykin, A.I., Multilevel Crystal Plasticity Models of Single-and Polycrystals. Direct Models, Phys. Mesomech., 2013, vol. 16, no. 2, pp. 99–124.

    Article  Google Scholar 

  18. van der Giessen, E., Deshpande, V.S., Cleveringa, H.H.M., and Needleman, A., Discrete Dislocation Plasticity and Crack Tip Fields in Single Crystals, J. Mech. Phys. Solids, 2001, vol. 49, pp. 2133–2153.

    Article  ADS  MATH  Google Scholar 

  19. Flouriot, S., Forest, S., Cailletaud, G., Koester, A., Remy, L., Burgardt, B., Gros, V., Mosset, S., and Delautre, J., Strain Localization at the Crack Tip in Single Crystal CT Specimens under Monotonous Loading: 3D Finite Element Analyses and Application to Nickel-Base Superalloys, Int. J. Fract., 2003, vol. 124, pp. 43–77.

    Article  Google Scholar 

  20. Clayton, J.D., Continuum Multiscale Modeling of Finite Deformation Plasticity and Anisotropic Damage in Polycrystals, Theor. Appl. Fract. Mech., 2006, vol. 45, pp. 163–185.

    Article  Google Scholar 

  21. Monchiet, V., Charkaluk, E., and Kondo, D., Plasticity-Damage Based Micromechanical Modeling in High Cycle Fatigue, C.R. Mecanique, 2006, vol. 334, pp. 129–136.

    Article  ADS  MATH  Google Scholar 

  22. Simonovski, I. and Cizelj, L., The Influence of Crystallographic Orientations of Grains on Microstructurally Small Cracks Using Crystal Plasticity and Random Grain Structure, Proc. PVP2006-ICPVT-11, July 23-27, 2006, Vancouver, BC, Canada, pp. 1-8.

  23. Bieler, T.R., Eisenlohr, P., Roters, F., Kumar, D., Mason, D.E., Crimp, M.A., and Raabe, D., The Role of Heterogeneous Deformation on Damage Nucleation at Grain Boundaries in Single Phase Metals, Int. J. Plasticity, 2009, vol. 24, pp. 1655–1683. doi 10.1016/j.ijplas.2008.09.002

    Article  MATH  Google Scholar 

  24. Boudifa, M., Saanouni, K., and Chaboche, J.-L., A Micromechanical Model for Inelastic Ductile Damage Prediction in Polycrystalline Metals for Metal Forming, Int. J. Mech. Sci., 2009, vol. 51, pp. 453–464.

    Article  Google Scholar 

  25. Ha, S. and Kim, K.T., Void Growth and Coalescence in F.C.C. Single Crystals, Int. J. Mech. Sci., 2010, vol. 52, pp. 863–873.

    Article  Google Scholar 

  26. El Bartali, A., Evrard, P., Aubin, V., Herenu, S., Alvarez-Armas, I., Armas, A.F., and Degallaix-Moreuil, S., Strain Heterogeneities between Phases in a Duplex Stainless Steel. Comparison between Measures and Simulation, Proc. Eng., 2010, vol. 2, pp. 2229–2237.

    Article  Google Scholar 

  27. Schwartz, J., Fandeur, O., and Rey, C., Fatigue Crack Initiation Modeling of 316LN Steel Based on Nonlocal Plasticity Theory, Proc. Eng., 2010, vol. 2, pp. 1353–1362.

    Article  Google Scholar 

  28. Sreeramulu, K., Sharma, P., Narasimhan, R., and Mishra, R.K., Numerical Simulations of Crack Tip Fields in Polycrystalline Plastic Solids, Eng. Fract. Mech., 2010, vol. 77, pp. 1253–1274.

    Article  Google Scholar 

  29. Sreeramulu, K., Biswas, P., Narasimhan, R., and Mishra, R.K., Ductile Fracture by Multiple Void Growth and Interaction ahead of a Notch Tip in Polycrystalline Plastic Solids, Int. J. Fracture, 2013, vol. 180, pp. 145–161. doi 10.1007/s10704-013-9807-6

    Article  Google Scholar 

  30. Xue, Y., Bode, B., and Brueckner-Foit, A., Micromechanical Simulation for Texture Induced Uncertainty in Fatigue Damage Incubation Using Crystal Plasticity Model, Proc. Eng., 2010, vol. 2, pp. 1787–1793.

    Article  Google Scholar 

  31. Yerra, S.K., Tekoglu, C., Scheyvaerts, F., Delannay, L., van Houtte, P., and Pardoen, T., Void Growth and Coalescence in Single Crystals, Int. J. Solid. Struct., 2010, vol. 47, pp. 1016–1029.

    Article  MATH  Google Scholar 

  32. Anahid, M., Samal, M.K., and Ghosh, S., Dwell Fatigue Crack Nucleation Model Based on Crystal Plasticity Finite Element Simulations of Polycrystalline Titanium Alloys, J. Mech. Phys. Solid., 2011, vol. 59, pp. 2157–2176.

    Article  ADS  MATH  Google Scholar 

  33. Kirane, K. and Ghosh, S., A Cold Dwell Fatigue Crack Nucleation Criterion for Polycrystalline Ti-6242 Using Grain-Level Crystal Plasticity FE Model, Int. J. Fatigue, 2008, vol. 30, pp. 2127–2139.

    Article  Google Scholar 

  34. Ghosh, S., Anahid, M., and Chakraborty, P., Modeling Fatigue Crack Nucleation Using Crystal Plasticity Finite Element Simulations and Multi-Time Scaling, Computational Methods for Microstructure-Property, Ghosh, S. and Dimiduk, D., Eds., 2011, pp. 497–554. doi 10.1007/978-1-4419-0643-4_14

    Chapter  Google Scholar 

  35. Kadkhodapour, J., Butz, A., Ziaei-Rad, S., and Schmauder, S., A Micromechanical Study on Failure Initiation of Dual Phase Steels under Tension Using Single Crystal Plasticity Model, Int. J. Plasticity, 2011, vol. 27, pp. 11031125.

    Article  MATH  Google Scholar 

  36. Lin, B., Zhao, L.G., and Tong, J., A Crystal Plasticity Study of Cyclic Constitutive Behaviour, Crack-Tip Deformation and Crack-Growth Path for a Polycrystalline Nickel-Based Superalloy, Eng. Fract. Mech., 2011, vol. 78, pp. 21742192.

    Google Scholar 

  37. Maitournam, M.H., Krebs, C., and Galtier, A., A Multiscale Fatigue Life Model for Complex Cyclic Multiaxial Loading, Int. J. Fatigue, 2011, vol. 33, pp. 232–240.

    Article  Google Scholar 

  38. Staroselsky, A. and Cassenti, B., Creep, Plasticity, and Fatigue of Single Crystal Superalloy, Int. J. Solid. Struct., 2011, vol. 48, pp. 2060–2075.

    Article  Google Scholar 

  39. Le Pecheur, A., Curtit, F., Clavel, M., Stephan, J.M., Rey, C., and Bompard, Ph., Polycrystal Modelling of Fatigue: Pre-Hardening and Surface Roughness Effects on Damage Initiation for 304L Stainless Steel, Int. J. Fatigue, 2012, vol. 45, pp. 48–60.

    Article  Google Scholar 

  40. Le Pecheur, A., Curtit, F., Clavel, M., Stephan, J.M., Rey, C., and Bompard, Ph., Thermomechanical FE Model with Memory Effect for 304L Austenitic Stainless Steel Presenting Microstructure Gradient, Int. J. Fatigue, 2012. doi 10.1016/j.ijfatigue.2012.05.016

    Google Scholar 

  41. Zhang, Y., Mabrouki, T., Nelias, D., Courbon, C., Rech, J., and Gong, Y., Cutting Simulation Capabilities Based on Crystal Plasticity Theory and Discrete Cohesive Elements, J. Mater. Process. Technol., 2012, vol. 212, pp. 936–953.

    Article  Google Scholar 

  42. Lebensohn, R.A. and Cazacu, O., Effect of Single-Crystal Plastic Deformation Mechanisms on the Dilatational Plastic Response of Porous Polycrystals, Int. J. Solid. Struct., 2012, vol. 49, pp. 3838–3852. http://dx.doi.org/10.1016/j.ijsolstr.2012.08.019

    Article  Google Scholar 

  43. Ghosh, S. and Anahid, M., Homogenized Constitutive and Fatigue Nucleation Models from Crystal Plasticity FE Simulations of Ti Alloys. Part 1: Macroscopic Anisotropic Yield Function, Int. J. Plasticity, 2013, vol. 47, pp. 182–201.

    Article  Google Scholar 

  44. Anahid, M. and Ghosh, S., Homogenized Constitutive and Fatigue Nucleation Models from Crystal Plasticity FE Simulations of Ti Alloys. Part 2: Macroscopic Probabilistic Crack Nucleation Model, Int. J. Plasticity, 2013, vol. 47, pp. 182–201.

    Article  Google Scholar 

  45. Ghosh, S. and Chakraborty, P., Microstructure and Load Sensitive Fatigue Crack Nucleation in Ti-6242 Using Accelerated Crystal Plasticity FEM Simulations, Int. J. Fatigue, 2013, vol. 48, pp. 231–246.

    Article  Google Scholar 

  46. Mareau, C., Cuillerier, D., and Morel, F., Experimental and Numerical Study of the Evolution of Stored and Dissipated Energies in a Medium Carbon Steel under Cyclic Loading, Mech. Mater., 2013, vol. 60, pp. 93–106. http://dx.doi.org/10.1016/j.mechmat.2013.01.011

    Article  Google Scholar 

  47. McCarthy, O.J., McGarry, J.P., and Leen, S.B., The Effect of Grain Orientation on Fretting Fatigue Plasticity and Life Prediction, Tribol. Int., 2013. http://dx.doi.org/10.1016/j.triboint.2013.09.023i

    Google Scholar 

  48. Dunne, F.P.E. and Sweeney, C., Micromechanical Studies of Deformation, Stress and Crack Nucleation in Polycrystal Materials, Advanced Materials Modelling for Structures, Altenbach, H. and Kruch, S., Eds., Advanced Structured Materials, 19, Berlin-Heidelberg: Springer-Verlag, 2013, pp. 133–139. doi 10.1007/978-3-642-35167-9_13

    Chapter  Google Scholar 

  49. Zhang, K.-S., Shi, Y.-K., and Ju, J.W., Grain-Level Statistical Plasticity Analysis on Strain Cycle Fatigue of a FCC Metal, Mech. Mater., 2013, vol. 64, pp. 76–90.

    Article  ADS  Google Scholar 

  50. Barton, N.R., Arsenlis, A., and Marian, J., A Polycrystal Plasticity Model of Strain Localization in Irradiated Iron, J. Mech. Phys. Solid., 2013, vol. 61, pp. 341–351.

    Article  ADS  Google Scholar 

  51. Srivastava, A. and Needleman, A., Void Growth versus Void Collapse in a Creeping Single Crystal, J. Mech. Phys. Solid., 2013, vol. 61, pp. 1169–1184. http://dx.doi.org/10.1016/j.jmps.2013.01.006

    Article  ADS  MathSciNet  Google Scholar 

  52. Kartal, M.E., Cuddihy, M.A., and Dunne, F.P.E., Effects of Crystallographic Orientation and Grain Morphology on Crack Tip Stress State and Plasticity, Int. J. Fatigue, 2014, vol. 61, pp. 46–58. http://dx.doi.org/10.1016/j.ijfatigue. 2013.11.022

    Article  Google Scholar 

  53. Huang, M., Tong, J., and Li, Z., A Study of Fatigue Crack Tip Characteristics Using Discrete Dislocation Dynamics, Int. J. Plasticity, 2014, vol. 54, pp. 229–246. http://dx.doi.org/10.1016/j.ijplas.2013.08.016

    Article  Google Scholar 

  54. Hazeli, K., Askari, H., Cuadra, J., Streller, F., Carpick, R.W., Zbib, H.M., and Kontsos, A., Microstructure-Sensitive Investigation of Magnesium Alloy Fatigue, Int. J. Plasticity, 2015, vol. 68, pp. 55–76. http://dx.doi.org/10.1016/j.ijplas.2014.10.010

    Article  Google Scholar 

  55. Li, L., Shen, L., and Proust, G., Fatigue Crack Initiation Life Prediction for Aluminium Alloy 7075 Using Crystal Plasticity Finite Element Simulations, Mech. Mater., 2015, vol. 81, pp. 84–93. http://dx.doi.org/10.1016Zj.mechmat.2014.11.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Trusov.

Additional information

Original Russian Text © P.S. Volegov, D.S. Gribov, P.V. Trusov, 2015, published in Fizicheskaya Mezomekhanika, 2015, Vol. 18, No. 6, pp. 12-23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volegov, P.S., Gribov, D.S. & Trusov, P.V. Damage and fracture: Crystal plasticity models. Phys Mesomech 20, 174–184 (2017). https://doi.org/10.1134/S1029959917020072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959917020072

Keywords

Navigation