Skip to main content
Log in

Spreading of a Water Drop in an Oil Layer

  • TECHNICAL SCIENCES
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract—

For the first time, the evolution of the spreading pattern of a fallen water drop over the surface of a cavity and a crown in a deep layer of oil has been traced by high-resolution video and photography. At the stage of active drop submergence, the double layer formed by the contacting surfaces of immiscible fluids is the most rapid component of the flow. Droplets containing both fluids fly out from the tops of the spikes on the edge of the crown. The water covering the inner surface of the cavity and the crown flows unevenly downwards after submergence of the drop. Isolated anhydrous areas, voids, are formed on the surface of the crown and are separated by narrow bands of water, which eventually break up into separate drops. The bulk of the water unevenly submerges to the bottom of the cavity and, at its collapses, remains in the bulk of the liquid in the form of individual fragments, gradually tightening into smooth droplets. The regularities of the temporal changes in the splash height and in the shape of the cavity section are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. M. Worthington and R. S. Cole, Philos. Trans. R. Soc. London 189 (1897). https://doi.org/10.1098/rsta.1897.0005

  2. S. T. Thoroddsen, T. G. Etoh, and K. Takehara, Annu. Rev. Fluid Mech. 40, 257 (2008). https://doi.org/10.1146/annurev.fluid.40.111406.102215

    Article  ADS  Google Scholar 

  3. L. V. Zhang, J. Toole, K. Fezzaa, and R. D. Deegan, J. Fluid Mech. 690, 5 (2012).  https://doi.org/10.1017/jfm.2011.396

    Article  ADS  Google Scholar 

  4. Yu. D. Chashechkin and V. E. Prokhorov, J. Exp. Theor. Phys. 122, 748 (2016). https://doi.org/10.1134/S1063776116020175

    Article  ADS  Google Scholar 

  5. A. Prosperetti and H. N. Oguz, Annu. Rev. Fluid Mech. 25, 577 (1993). https://doi.org/10.1146/annurev.fl.25.010193.003045

    Article  ADS  Google Scholar 

  6. Yu. D. Chashechkin and V. E. Prokhorov, Dokl. Phys. 58, 296 (2013). https://doi.org/10.1134/S1028335813070021

    Article  ADS  Google Scholar 

  7. B. K. Sahay, Indian J. Phys. 18, 306 (1944).

    Google Scholar 

  8. D. W. Murphy, C. Li, V. d’Albignac, D. Morra, and J. Katz, J. Fluid Mech. 780, 536 (2015). https://doi.org/10.1017/jfm.2015.431

    Article  ADS  Google Scholar 

  9. Yu. D. Chashechkin and A. Yu. Il’inyh, Problemy Evolyutsii Otkrytykh Sistem 19 (2), 60 (2016).

  10. H. L’huissier, C. Sun, A. Prosperetti, and D. Lohse, Phys. Rev. Lett. 110, 264503 (2013).  https://doi.org/10.1103/PhysRevLett.110.264503

    Article  ADS  Google Scholar 

  11. F. Peters, M. Nüllig, and D. Miletic, Forsch. Ingenieurwes. 78, 87 (2014).  https://doi.org/10.1007/s10010-014-0176-8

    Article  Google Scholar 

  12. W. Wang, C. Ji, F. Lin, X. Wei, and J. Zou, Phys. Fluids 31, 037107 (2019). https://doi.org/10.1063/1.5089001

    Article  ADS  Google Scholar 

  13. S. L. Manzello, J. C. Yang, and T. G. Cleary, Fire Saf. J. 38, 651 (2003). https://doi.org/10.1016/S0379-7112(03)00048-1

    Article  Google Scholar 

  14. R. U. Meckenstock, F. von Netzer, C. Stumpp, T. Lueders, and A. M. Himmelberg, N. Hertkorn, Ph. Schmitt-Kopplin, M. Harir, R. Hosein, Sh. Haque, and D. Schulze-Makuch, Science 345, 673 (2014). https://doi.org/10.1126/science.1252215

    Article  ADS  Google Scholar 

  15. T. Fujimatsu, H. Fujita, M. Hirota, and O. Okada, J. Colloid Interface Sci 264, 212 (2003).  https://doi.org/10.1016/S0021-9797(03)00402-8

    Article  ADS  Google Scholar 

  16. Hydrophysical complex of unique facilities for modeling hydrodynamic processes at the Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences. http://www.ipmnet.ru/uniqequip/gfk/. Cited February 6, 2020.

Download references

ACKNOWLEDGMENTS

These experiments were performed on the “Fine structural fast processes” facility, a part of the hydrophysical complex for modeling hydrodynamic processes at the Ishlinskii Institute for Problems in Mechanics, Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation, project no. 19-19-00598.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. D. Chashechkin or A. Yu. Ilinykh.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chashechkin, Y.D., Ilinykh, A.Y. Spreading of a Water Drop in an Oil Layer. Dokl. Phys. 65, 75–81 (2020). https://doi.org/10.1134/S1028335820020020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335820020020

Keywords:

Navigation