Skip to main content
Log in

A Fractal Model of Reinforcement of Carbon Polymer–Nanotube Composites with Ultralow Concentrations of Nanofiller

  • TECHNICAL PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

The structural aspects of determining the degree of reinforcement (increase in elasticity modulus) of carbon polymer–nanotube composites with ultralow concentrations of nanofiller are considered. It is shown that the specified parameter is controlled by two factors, the structure of the nanocomposite and the type of reinforcing component. The introduction of a nanofiller in the polymer matrix modifies its structure due to the formation of interfacial regions. Hence, the efficiency of nanofiller as the reinforcing element is determined by its ability to generate interfacial regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. H. Miyagawa and L. T. Drzal, Polymer 45 (18), 5163 (2004).

    Article  Google Scholar 

  2. F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, Composites Sci. Techn. 65 (15/16), 2300 (2005).

    Article  Google Scholar 

  3. W. Jeong and M. R. Kessler, Chem. Mater. 20 (22), 7060 (2008).

    Article  Google Scholar 

  4. A. K. Mikitaev, G. V. Kozlov, and G. E. Zaikov, Polymer Nanocomposites: Variety of Structural Forms and Applications (Nova Sci. Publ., N.Y., 2008).

    Google Scholar 

  5. S. Ahmed and F. R. Jones, J. Mater. Sci. 25 (12), 4933 (1990).

    Article  ADS  Google Scholar 

  6. D. Blond, V. Barron, M. Ruether, K. P. Ryan, V. Nicolosi, W. J. Blau, and J. N. Coleman, Adv. Funct. Mater. 16 (6), 1608 (2006).

    Article  Google Scholar 

  7. A. K. Mikitaev and G. V. Kozlov, Phys. Solid State 57 (5), 574 (2015).

    Article  Google Scholar 

  8. G. V. Kozlov and G. E. Zaikov, Structure of the Polymer Amorphous State (Brill Acad. Publ., Utrecht, Boston, 2004).

    Book  Google Scholar 

  9. D. W. Schaefer and R. S. Justice, Macromolecules 40 (24), 8501 (2007).

    Article  ADS  Google Scholar 

  10. G. V. Kozlov and Yu. G. Yanovskii, Fractal Mechanics of Polymers (Appl. Acad. Press, Toronto, N.J., 2015).

    Google Scholar 

  11. G. V. Kozlov, Yu. G. Yanovskii, and G. E. Zaikov, Structure and Properties of Particulate-Filled Polymer Composites: The Fractal Analysis (Nova Sci. Publ., N.Y., 2010).

    Google Scholar 

  12. R. Jan, P. May, A. P. Bell, A. Habib, U. Khan, J. N. Coleman, Nanoscale 6 (9), 4889 (2014).

    Article  ADS  Google Scholar 

  13. A. K. Mikitaev and G. V. Kozlov, Phys. Solid State 59 (7), 1446 (2017).

    Article  ADS  Google Scholar 

  14. G. V. Kozlov and I. V. Dolbin, Izv. Vyssh. Uchebn. Zaved., Fiz. 60 (6), 72 (2017).

    Google Scholar 

  15. R. Schnell, M. Stamm, and C. Creton, Macromolecules 31 (7), 2284 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Dolbin.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, G.V., Dolbin, I.V. & Koifman, O.I. A Fractal Model of Reinforcement of Carbon Polymer–Nanotube Composites with Ultralow Concentrations of Nanofiller. Dokl. Phys. 64, 225–228 (2019). https://doi.org/10.1134/S1028335819050021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028335819050021

Navigation