Skip to main content
Log in

Spatial Variability of the Methane Hydrate Stability Zone’s Upper Boundary Parameters in the Water Column of the Sea of Okhotsk

  • OCEANOLOGY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Based on all the available oceanological information (131 286 stations carried out from 1929 to 2020), for the first time for the Sea of Okhotsk, the spatial patterns of the upper boundary distribution parameters of the methane hydrate stability zone (water temperature, salinity, depth of the upper boundary in the water column) are presented and discussed. A model of the methane hydrate stability zone is considered. We revealed that the minimum water temperature and the minimum depth of the upper boundary of the gas hydrate stability zone (less than 1°C and 300–320 m, respectively) in the Sea of Okhotsk are located near the eastern slope of Sakhalin Island. The maximum water temperature and maximum depth of the upper boundary (1.5–1.7°C and 340–350 m, respectively) are characteristic of the area adjacent to the central and northern straits of the Kuril Islands Arc, as well as above the slope of the Kamchatka Peninsula. The salinity at the upper boundary of the methane hydrate stability zone in the Sea of Okhotsk varies within a narrow range from 33.4 to 33.6 psu, which is quite close to the conditions assume for the stability of methane hydrate in seawater. An area where the thermobaric conditions in the water column not favorable for the formation of methane hydrates has been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Yu. F. Makogon, Geol. Polezn. Iskop. Mirovogo Okeana, No. 2, 5–21 (2010).

  2. M. T. Reagan, G. J. Moridis, S. M. Elliott, and M. Maltrud, J. Geophys. Res. 116, C09014 (2011).

  3. A. A. Trofimuk, N. V. Cherskii, and V. P. Tsarev, Dokl. Akad. Nauk SSSR 212 (4), 931–934 (1973).

    CAS  Google Scholar 

  4. Methane and Climate Changes: Scientific Problems and Technological Aspects, Ed. by V. G. Bondur, I. I. Mo-khov, and A. A. Makosko (Russ. Acad. Sci., Moscow, 2022) [in Russian].

    Google Scholar 

  5. V. I. Bogoyavlenskii, A. S. Yanchevskaya, I. V. Bogoyavlenskii, and A. V. Kishankov, Arktika: Ekol. Ekon., No. 3 (31), 42–55 (2018).

  6. O. V. Veselov, V. V. Gordienko, and V. V. Kudel’kin, Geol. Polezn. Iskop. Mirovogo Okeana, No. 3 (5), 62–68 (2006).

  7. Z. Chen, W. Bai, and W. Xu, Chin. J. Geophys. 48 (4), 936–945 (2005).

    Google Scholar 

  8. G. R. Dickens and M. S. Quinby-Hunt, Geophys. Rev. Lett. 21 (19), 2115–2118 (1994).

    Article  CAS  Google Scholar 

  9. A. V. Eliseev, Fundam. Prikl. Klimatol. 1, 52–70 (2018).

    Google Scholar 

  10. V. Bogoyavlensky, A. Kishankov, A. Yanchevskaya, and I. Bogoyavlensky, Geosciences 8 (12), 453 (2018). https://doi.org/10.3390/geosciences8120453

    Article  CAS  Google Scholar 

  11. D. F. McGinnis, J. Greinert, Y. Artemov, S. E. Beaubien, and A. Wuest, J. Geophys. Res. 111, C09007 (2006). https://doi.org/10.1029/2005JC003183

  12. N. G. Granin, M. M. Makarov, K. M. Kucher, and R. Y. Gnatovsky, J. Geophys. Res. 30 (3-4), 399–409 (2010). https://doi.org/10.1007/s00367-010-0201-3

    Article  CAS  Google Scholar 

  13. A. Biastoch, T. Treude, L. H. Rupke, U. Riebesell, C. Roth, E. B. Burwicz, W. Park, M. Latif, C. W. Boning, G. Madec, and K. Wallmann, Geophys. Rev. Lett. 38, L08602 (2011). https://doi.org/10.1029/2011GL047222

  14. M. Giustiniani, U. Tinivella, M. Jakobsson, and M. Rebesco, J. Geol. Res. 2013, 783969 (2013). https://doi.org/10.1155/2013/783969

  15. M. T. Reagan and G. J. Moridis, Geophys. Rev. Lett. 34, L22709 (2007). https://doi.org/10.1029/2007GL031671

  16. A. I. Obzhirov and R. B. Shakirov, in Eurasian Continental Boundaries: Geology and Geoecology, Spec. Iss. No. 4: Eurasian Boundary Seas: Geology and Mineral Resources (GEOS, Moscow, 2012), pp. 122–136 [in Russian].

  17. V. A. Luchin, in Russian Far Eastern Seas (Nauka, Moscow, 2007), Vol. 1, pp. 232–252 [in Russian].

    Google Scholar 

  18. K. V. Moroshkin, Okeanologiya 4, 641–643 (1964).

    Google Scholar 

  19. V. A. Luchin Tr. DVNII, No. 96, 69–76 (1982).

  20. P. A. Fayman, S. V. Prants, M. V. Budyansky, and M. Y. Uleysky, Izv., Atmos. Oceanic Phys. 57 (3), 329–340 (2021).

    Article  Google Scholar 

  21. L. D. Talley, Deep Sea Res. A, No. 38, Suppl. 1, 171–190 (1991).

    Google Scholar 

  22. S. Gladyshev, L. Talley, G. Kantakov, G. Khen, and M. Wakatsuchi, J. Geophys. Res. 108 (C6), 3186 (2003). https://doi.org/10.1029/2001JC000877

    Article  Google Scholar 

  23. G. D. Ginsburg, I. S. Gramberg, and V. A. Solov’ev, Sov. Geol., No. 11, 12–19 (1990).

  24. V. A. Luchin and V. I. Matveev, Izv. TINRO 187, 205–216 (2016).

    Article  Google Scholar 

  25. A. L. Figurkin, Izv. TINRO 166, 255–274 (2011).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the reviewers for their constructive comments. This work contributed to the objectives of the GEOMIR project under the National Plan of Action of the UN Decade of Ocean Sciences for Sustainable Development (2021–2030) and the WESTPAC Working Group on Gas Hydrates and Methane Fluxes in the Indo-Pacific (CoSGAS).

Funding

This study was carried out within the framework of a state assignment for the V.I. Il’ichev Pacific Oceanological Institute, Far East Branch, Russian Academy of Sciences, for 2024–2026 “Study of the Structure and Dynamics of the World Ocean Waters under the Conditions of Modern Climate Change,” project nos. 124022100079-4 and 124002210076-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Petrova.

Ethics declarations

The authors of this article declare that they have no conflicts of interest.

Additional information

Translated by M. Hannibal

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakirov, R.B., Luchin, V.A. & Petrova, E.A. Spatial Variability of the Methane Hydrate Stability Zone’s Upper Boundary Parameters in the Water Column of the Sea of Okhotsk. Dokl. Earth Sc. (2024). https://doi.org/10.1134/S1028334X24601901

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1028334X24601901

Keywords:

Navigation