Skip to main content
Log in

Acceleration of Antarctica Glaciers at High Subglacial Heat Flow

  • GLACIOLOGY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

High subglacial heat flow and volcanic activity in West Antarctica contribute to instability and accelerated flow into the ocean of the West Antarctic ice sheet. In this case, a catastrophic rise in sea level by tens of centimeters – the first meters can occur in a very short geological time (years-decades) due to the rapid sliding of large masses of ice in West Antarctica into the ocean. If the Pine Island (50 cm sea level rise) or Thwaites (65 cm sea level rise) glaciers slide into the ocean, the West Antarctic Ice Sheet will lose support from these glaciers and may begin to collapse. In this case, the sea level will rise by a few meters. Based on Glen’s rheological law for a two-dimensional model of the movement of ice as a nonlinear viscous fluid, the flow velocities of a 3000 m thick glacier were calculated under conditions of adhesion to the bed (~20 m/year) and under conditions of sliding along the bedrock when the lower edge of the glacier melts due to increased heat flow from below (~3000 m/year). These velocities are in good agreement with the velocities of the Pine Island, Thwaites, Amery, Denman and Totten glaciers. The rapid movement of some outlet glaciers in East Antarctica is also likely caused by melting of their bases, suggesting increased subglacial heat flow in these areas of East Antarctica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. L. I. Lobkovsky, Geosciences 10, 428 (2020).

    Article  CAS  Google Scholar 

  2. L. I. Lobkovsky, A. A. Baranov, M. M. Ramazanov, I. S. Vladimirova, Y. V. Gabsatarov, I. P. Semiletov, and D. A. Alekseev, Geosciences 12, 372 (2022).

    Article  CAS  Google Scholar 

  3. E. Rignot, J. Mouginot, B. Scheuchl, M. van den Broeke, M. J. van Wessem, and M. Morlighem, Proc. Nat. Acad. Sci. USA 116, 1095–1103 (2019).

    Article  CAS  Google Scholar 

  4. C. D. Ruppel and J. D. Kessler, Rev. Geophys. 55, 126–168 (2017).

    Article  Google Scholar 

  5. M. Morlighem, E. Rignot, T. Binder, D. Blankenship, R. Drews, G. Eagles, O. Eisen, F. Ferraccioli, R. Forsberg, P. Fretwell, et al., Nat. Geosci. 13, 132–137 (2020).

    Article  CAS  Google Scholar 

  6. A. Baranov and A. Morelli, Tectonophysics 846, 299–313 (2023).

    Article  Google Scholar 

  7. A. A. Baranov, L. I. Lobkovsky, and A. M. Bobrov, Dokl. Earth Sci. 512 (1), 854–859 (2023).

    Article  CAS  Google Scholar 

  8. M. Lösing, J. Ebbing, and W. Szwillus, Front. Earth Sci. 8, 105 (2020).

    Article  Google Scholar 

  9. Van Wyk De Vries, R. Bingham, and A. Hein, Geol. Soc. Spec. Publ. 461, 231 (2018).

    Article  Google Scholar 

  10. A. A. Baranov and L. I. Lobkovsky, Dokl. Earth Sci. (2023). https://doi.org/10.1134/S1028334X23602420

  11. D. A. Golynskii and A. V. Golynskii, Reg. Geol. Metallog., No. 52, 58–72 (2012).

  12. A. V. Golynskii and D. A. Golynskii, in Russian Geological and Geophysical Research in Antarctic: Scientific Results (St. Petersburg, 2009), Iss. 2, pp. 132–162 [in Russian].

  13. V. N. Masolov, R. G. Kurinin, and G. E. Grikurov, in 25th Anniversary of Soviet Antarctic Expedition (Gidrometeoizdat, Leningrad, 1983), pp. 16–29 [in Russian].

    Google Scholar 

  14. E. N. Kamenev and G. L. Leichenkov, The 1 : 25  500  000 Structural Map of the Antarctic. Explanatory Note; 1 : 30  000  000 Geological and Mineragenic World’s Map, Ed. by L.I. Krasnyi (Karpinsky Russ. Geol. Res. Inst., St. Petersburg, 2000).

    Google Scholar 

  15. N. M. Sushchevskaya, N. A. Migdisova, A. V. Antonov, R. Sh. Krymsky, B. V. Belyatsky, D. V. Kuzmin, and Ya. V. Bychkova, Geochem. Int. 52 (12), 1030–1048 (2014).

    Article  CAS  Google Scholar 

  16. B. Loose, A. C. Naveira Garabato, P. Schlosser, W. J. Jenkins, D. Vaughan, and K. J. Heywood, Nat. Commun. 9, 2431 (2018).

    Article  Google Scholar 

  17. R. Dziadek, F. Ferraccioli, and K. Gohl, Commun. Earth Environ. 2, 162 (2021).

    Article  Google Scholar 

  18. F. Pattyn, Cryosphere 11, 1851–1878 (2017).

    Article  Google Scholar 

  19. L. I. Lobkovsky, A. A. Baranov, I. A. Garagash, M. M. Ramazanov, I. S. Vladimirova, Y. V. Gabsatarov, D. A. Alekseev, and I. P. Semiletov, Geosciences 13, 171 (2023).

    Article  CAS  Google Scholar 

  20. V. P. Epifanov, Led Sneg 56, 333–344 (2016).

    Google Scholar 

  21. J. Feldmann and A. Levermann, Proc. Nat. Acad. Sci. USA 112, 14191–14196 (2015).

    Article  CAS  Google Scholar 

  22. L. I. Lobkovskii, A. A. Baranov, I. S. Vladimirova, and D. A. Alekseev, Her. Russ. Acad. Sci. 93 (6), 526–538 (2023).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Reviewer for constructive comments which helped to improve the manuscript.

Funding

The work was carried out partly within the framework of  the state assignment of the P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences no. FMWE-2021-0004, partly within the framework of the state assignment of the Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences no. AAAA-A19-119011490131-3 and partly within the framework of the state assignment of Geothermal Research and Renewable Energy, Branch of Joint Institute for High Temperatures of the Russian Academy of Sciences no. 121121700223-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Baranov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobkovsky, L.I., Baranov, A.A. & Ramazanov, M.M. Acceleration of Antarctica Glaciers at High Subglacial Heat Flow. Dokl. Earth Sc. 515, 586–591 (2024). https://doi.org/10.1134/S1028334X23603188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X23603188

Keywords:

Navigation