Skip to main content
Log in

Forecasting Groundwater Quality Parameters using Machine Learning Models: a Case Study of Khemismiliana Plain, Algeria

  • GEOECOLOGY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Total Dissolved Solids, one of the most extensively used indicators for assessing groundwater quality, it useful to estimate salinity and hardness in water. The objective of the present study is to develop accurate and dependable machine learning models for forecasting the total dissolved solids, parameter; as well to evaluate and explain the relationship of total dissolved solids with the mineral salts. Four machine learning models Decision tree, Random forest, Adaboost and support victor regression SVR have been successfully employed for modeling the total dissolved solids using Electrical Conductivity (EC) and concentrations of major elements (Ca2+, Mg2+, Na+, K+, Cl, SO\(_{4}^{{2 - }}\), HCO\(_{3}^{ - }\), NO\(_{3}^{ - }\)) of the groundwater aquifer in upper Cheliff plain (the northwestern of Algeria). One hundred ninety-one of observations collected from wells by the ANRH (national water resources agency, Algeria) for a period of 8 years between 2008 and 2016, were randomly divided into training and validation sets. The overall prediction performance results indicated that the models provided satisfactory estimation with priority to the support vector regression model, based on the four parameters including: EC, Na+, SO\(_{4}^{{2 - }}\), and Cl, with the best support vector machine results of RMSE = 0.0328; NS = 0.9455. Feature selection method revealed that the correlation analysis results were reliable and could be utilized as a first step in selecting the optimum input data for forecasting groundwater quality parameters. Generally, the proposed models are useful in predicting groundwater quality parameters and may aid decision-makers in developing and managing groundwater plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. E. Ercin and A. Y. Hoekstra, Environ. Int. 64, 71–82 (2014). https://doi.org/10.1016/j.envint.2013.11.019

    Article  Google Scholar 

  2. F. B. Banadkooki, M. Ehteram, A. N. Ahmed, C. M. Fai, H. A. Afan, W. M. Ridwam, and A. El-Shafie, Sustainability 11 (23), 6681 (2019). https://doi.org/10.3390/su11236681

    Article  Google Scholar 

  3. F. B. Banadkooki, M. Ehteram, F. Panahi, S. S. Sammen, F. B. Othman, and E. S. Ahmed, J. Hydrol. 587, 124989 (2020). https://doi.org/10.1016/j.jhydrol.2020.124989

  4. F. B. Banadkooki, M. Ehteram, A. N. Ahmed, F. Y. Teo, C. M. Fai, H. A. Afan, and A. El-Shafie, Nat. Resour. Res. 29, 3233–3252 (2020). https://doi.org/10.1007/s11053-020-09634-2

    Article  Google Scholar 

  5. S. Zaman ZadGhavidel and M. Montaseri, Stochastic Environ. Res. Risk Assess., No. 8, 2101–2118 (2014). https://doi.org/10.1007/s00477-014-0899-y

  6. WHO, Guidelines for Drinking-Water Quality (World Health Organization, 2004), Vol. 1.

    Google Scholar 

  7. T. M. Tung and Z. M. Yaseen, J. Hydrol. 585, 124670 (2020). https://doi.org/10.1016/j.jhydrol.2020.124670

    Article  Google Scholar 

  8. M. Jamei, I. Ahmadianfar, X. Chu, and Z. M. Yaseen, J. Hydrol. 589, 125335 (2020). https://doi.org/10.1016/j.jhydrol.2020.125335

    Article  Google Scholar 

  9. O. Kisi, N. Akbari, M. Sanatipour, A. Hashemi, K. Teimourzadeh, and J. Shiri, J. Environ. Inf. 22 (2), 92–101 (2013). https://doi.org/10.3808/jei.201300248

    Article  Google Scholar 

  10. D. L. Sorensen, M. M. McCarthy, E. J. Middlebrooks, and D. B. Porcella, Suspended and Dissolved Solids Effects on Freshwater Biota: a Review (Environmental Research Lab., Office of Research and Development U.S. Environmental Protection Agency, Corvallis, OR, 1977).

  11. J. D. Hem, Study and Interpretation of the Chemical Characteristics of Natural Water (Department of the Interior, US Geol. Surv., 1985), Vol. 2254.

    Google Scholar 

  12. A. M. Melesse, K. Khosravi, J. P. Tiefenbacher, S. Heddam, S. Kim, A. Mosavi, and B. T. Pham, Water 12 (10), 2951 (2020). https://doi.org/10.3390/w12102951

    Article  Google Scholar 

  13. A. El Bilali, A. Taleb, and Y. Brouziyne, Agric. Water Manag. 245, 106625 (2020). https://doi.org/10.1016/j.agwat.2020.106625

    Article  Google Scholar 

  14. T. Thomas, A. P. Vijayaraghavan, and S. Emmanuel, Machine Learning Approaches in Cyber Security Analytics (Springer, Singapore, 2020), pp. 37–200. https://doi.org/10.1007/978-981-15-1706-8

  15. L. Breiman, Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  16. G. Biau, J. Mach. Learn. Res. 13 (1), 1063–1095 (2012).

    Google Scholar 

  17. J. Wang, R. Zuo, and Y. Xiong, Nat. Resour. Res. 29, 189–202 (2020). https://doi.org/10.1007/s11053-019-09510-8

    Article  Google Scholar 

  18. L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, Adv. Neural Inf. Process. Syst. 31 (2018). https://arxiv.org/abs/1810.11363v1.

  19. V. N. Vapnik, The Nature of Statistical Learning Theory (Springer, New York, 1995). https://doi.org/10.1007/978-1-4757-2440-0

  20. S. Samantaray, O. Tripathy, A. Sahoo, and D. K. Ghose, in Proc. 3rd Int. Conf. on Smart Computing and Informatics (Springer Singapore, 2020), Vol. 1, pp. 767‒774. https://doi.org/10.1007/978-981-13-9282-5_74

  21. S. Maroufpoor, A. Fakheri-Fard, and J. Shiri, J. Hydraul. Eng. 25 (2), 232–238 (2019). https://doi.org/10.1080/09715010.2017.1408036

    Article  Google Scholar 

  22. BRGM Elaboration de Tests de Validation des Donnees Analytiques de l’Observation National de la Qualite des Eaux Souterraines (ONQES). Rap. BRGM. (1998), R 40009.

Download references

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

PhD Student Tachi Amina contributed in design, analysis, interpretation of data, programming and modelling, writing manuscript; Dr Hab Metaiche Mehdi contributed in design, analysis, interpretation of data; Dr Messoul Abd Errahmen contributed in design; Dr Bouguerra Hamza contributed in design, figures preparation, proof reading manuscript; Dr Hab Tachi Salah Edine contributed in design, programming and modeling, writing and proof reading manuscript.

Corresponding author

Correspondence to A. Tachi.

Ethics declarations

I declare that the authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tachi, A., Metaiche, M., Messoul, A. et al. Forecasting Groundwater Quality Parameters using Machine Learning Models: a Case Study of Khemismiliana Plain, Algeria. Dokl. Earth Sc. 512, 907–914 (2023). https://doi.org/10.1134/S1028334X23600792

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X23600792

Keywords:

Navigation