Skip to main content
Log in

Corrosion Resistance of the Nd–Ti Matrix for Actinides

  • GEOECOLOGY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Leaching of Np and Pu in water from samples composed of two titanate phases Nd2Ti3O9 (75 wt %) and Nd2Ti2O7 (25 wt %) is investigated. The rates of leaching actinides decrease with time at T = 90°C and are equal to 10–8 g/(cm2 day) for Pu and 7 × 10–7 g/(cm2 day) for Np on the 28th day of the experiment. The higher value of neptunium is likely related to its existence in the samples in valence states IV and V, while plutonium is in states III and IV. It is shown that the acidity of the solution has a significant effect on the leaching rate. Under near-neutral conditions typical of deep repositories, matrices for actinide immobilization based on REE titanates can be considered as corrosion resistant. The causes of the formation of a perovskite-like phase with Nd2Ti3O9 composition are discussed. They can be related to both the high temperature and the reducing conditions of the synthesis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. V. Yudintsev, Radiochemistry 63 (5), 527–556 (2021).

    Article  Google Scholar 

  2. A. A. Kopyrin, A. I. Karelin, and V. A. Karelin, Technology of Manufacture and Radiochemical Recycling of Nuclear Fuel (Atomenergoizdat, Moscow, 2006) [in Russian].

    Google Scholar 

  3. Spent Nuclear Fuel Reprocessing Flowsheet (OECD NEA, Paris, 2012).

  4. R. C. Ewing, Mineral. Mag. 75 (4), 2359–2377 (2011).

    Article  Google Scholar 

  5. G. R. Lumpkin, K. L. Smith, R. Giere, and C. T. Williams, in Energy, Waste, and the Environment—A Geochemical Perspective, Ed. by R. Giere and P. Stille (Geol. Soc., London, 2004), Vol. 236, pp. 89–111.

    Google Scholar 

  6. G. R. Lumpkin, in Experimental and Theoretical Approaches to Actinide Chemistry, Ed. by J. K. Gibson and W. A. de Jong (John Wiley, 2018), Ch. 7, pp. 333–377.

    Google Scholar 

  7. K. R. Whittle, G. R. Lumpkin, M. G. Blackford, R.  D. Aughterson, K. L. Smith, and N. J. Zaluzec, J. Solid-State Chem. 183, 2416–2420 (2010).

    Article  Google Scholar 

  8. S. S. Shoup, PhD Dissertation (Univ. Tennessee, Knoxville, 1995).

  9. S. V. Yudintsev, E. V. Aleksandrova, T. S. Livshits, V. I. Mal’kovskii, Ya. V. Bychkova, and B. R. Tagirov, Dokl. Earth Sci. 458 (2), 1281–1285 (2014).

    Article  Google Scholar 

  10. S. V. Yudintsev, V. I. Malkovsky, M. S. Nikolsky, and B. S. Nikonov, Dokl. Earth Sci. 485 (1), 303–308 (2019).

    Article  Google Scholar 

  11. K. Yang, P. Lei, T. Yao, B. Gong, Y. Wang, M. Li, J. Wang, and J. Lian, Corros. Sci. 185, Pap. ID 109394 (2021).

  12. S. V. Yudintsev, A. A. Lizin, and S. V. Tomilin, Dokl. Earth Sci. 503 (1), 129 (2022).

    Article  Google Scholar 

  13. W. J. Weber, R. C. Ewing, C. R. A. Catlow, T. Diaz de la Rubia, L. W. Hobbs, C. Kinoshita, Hj. Matzke, A. T. Motta, M. Nastasi, E. K. H. Salje, E. R. Vance, and S. J. Zinkle, J. Mater. Res. 13 (6), 1434–1484 (1998).

    Article  Google Scholar 

  14. D. M. Strachan, R. D. Scheele, E. C. Buck, J. P. Icenhower, A. E. Kozelisky, R. L. Sell, R. J. Elovich, and W. C. Buchmiller, J. Nucl. Mater. 345, 109–135 (2005).

    Article  Google Scholar 

  15. D. M. Strachan, R. D. Scheele, E. C. Buck, A. E. Kozelisky, R. L. Sell, R. J. Elovich, and W. C. Buchmiller, J. Nucl. Mater. 372, 16–31 (2008).

    Article  Google Scholar 

  16. R. C. Ewing and W. J. Weber, in The Chemistry of the Actinide and Transactinide Elements, Ed. by L. R. Morss, N. M. Edelstein, and J. Fuger (Springer, Dordrecht, 2010), Vol. 6, Ch. 35, pp. 3813–3887.

    Google Scholar 

  17. B. E. Burakov, M. I. Ojovan, and W. E. Lee, Crystalline Materials for Actinide Immobilization (Imperial College Press, London, 2011).

    Book  Google Scholar 

  18. F. Ren, C. An, Y. Yan, V. Smolenski, A. Novoselova, Y. Xue, F. Ma, and M. Zhang, Ceram. Int. 48 (11), 15541–15550 (2022).

    Article  Google Scholar 

  19. S. S. Shoup, C. E. Bamberger, J. L. Tyree, and L. Anovitz, J. Solid-State Chem. 127, 231–239 (1996).

    Article  Google Scholar 

  20. W. Gong and R. Zhang, J. Alloys Compd. 548, 216–221 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to B.E. Burakov for his comments that allowed us to refine this work.

Funding

This work was carried out under a State Assignment of the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry on the subject of the research work. The structural study of the phases was supported by the Ministry of Education and Science of the Russian Federation, grant no. 075-15-2020-782.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Yudintsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudintsev, S.V., Danilov, S.S., Shiryaev, A.A. et al. Corrosion Resistance of the Nd–Ti Matrix for Actinides. Dokl. Earth Sc. 505, 512–516 (2022). https://doi.org/10.1134/S1028334X22070194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X22070194

Keywords:

Navigation