Skip to main content
Log in

Wind–Sand Flux Electrization over Desertified Areas

  • GEOPHYSICS
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

Using the measurement data in a wind–sand flux on the desertified areas of Astrakhan oblast and Kalmykia, it has been established that the time variability of saltating and dust aerosol particle concentrations, the electric characteristics of the wind–sand flux, including electric currents of saltation, the volume charge of dust aerosol particles, and the electric field intensity in the near-surface layer of the atmosphere within a range of ~30 s to 30 min are determined by the low-frequency variations in the horizontal component of the wind velocity. According to the data of measurements, over the desertified area, the electric charge surface density reaches +25 nC/m2. The empirical probability distribution of a specific charge for sand grains under the condition of quasi-continuous saltation is obtained. A saltation initiation mechanism by electric discharges on the underlayer surface is proposed. An analytical model of particle liftoff to the near-surface layer of the atmosphere by electric discharges on the underlayer surface is presented. It is shown that, during the electric (corona) discharge, the saltating particle launch velocity can exceed 1 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. Shao, Physics and Modeling of Wind Erosion (Springer, New York, 2000).

    Google Scholar 

  2. J. F. Kok, E. I. R. Parteli, T. I. Michaels, and D. Bou Karam, Rep. Prog. Phys. 75, 1–119 (2012).

    Article  Google Scholar 

  3. I. Tegen, A. Lacis, and I. Fung, Nature 380, 419–422 (1996).

    Article  Google Scholar 

  4. N. Mahowald, S. Albani, J. F. Kok, et al., Aeolian Res. 15, 53–71 (2014).

    Article  Google Scholar 

  5. G. I. Gorchakov, V. M. Kopeikin, A. V. Karpov, et al., Atmos. Oceanic Opt. 29 (1), 5–12 (2016).

    Article  Google Scholar 

  6. G. I. Gorchakov, A. V. Karpov, V. M. Kopeikin, et al., Proc. SPIE—Int. Soc. Opt. Eng. 11560, 1156076 (2020).

  7. G. I. Gorchakov, A. V. Karpov, R. A. Gushchin, et al., Dokl. Earth Sci. 496 (2), 119–125 (2021).

    Article  Google Scholar 

  8. K. R. Rasmussen and M. Sorensen, J. Geophys. Res. 113, FO2S12 (2008).

    Article  Google Scholar 

  9. T. D. Ho, P. Dupont, A. O. E. El Moctar, and A. Valanc, Phys. Rev. E 85, 052301 (2012).

    Article  Google Scholar 

  10. Y. Huang, Y. F. Kok, R. Y. Martin, et al., Atmos. Chem. Phys. 19, 2947–2964 (2019).

    Article  Google Scholar 

  11. J. F. Kok and N. O. Renno, Phys. Rev. Lett. 100, 014501 (2008).

    Article  Google Scholar 

  12. D. S. Schmidt, R. A. Schmidt, and Y. D. Dent, J. Geophys. Res. 103 (D8), 8997–9001 (1998).

    Article  Google Scholar 

  13. G. I. Gorchakov, V. I. Ermakov, V. M. Kopeikin, et al., Dokl. Earth Sci. 410 (7), 1109–1112 (2006).

    Article  Google Scholar 

  14. T. G. Bo and X.-Y. Zheng, Aeolian Res. 8, 39–47 (2013).

    Article  Google Scholar 

  15. G. I. Gorchakov, V. M. Kopeikin, A. V. Karpov, et al., Dokl. Earth Sci. 456 (2), 700–705 (2014).

    Article  Google Scholar 

  16. D. V. Sivukhin, General Course of Physics. Electric Energy (Nauka, Fizmatlit, Moscow, 1983) [in Russian].

  17. O. E. Semenov, Introduction to Experimental Meteorology and Sandstorm Climatology (Kazakh Res. Inst. Ecol. Climate, Almaty, 2011) [in Russian].

    Google Scholar 

  18. E. A. Malinovskaya, O. G. Chkhetiani, I. N. Panchishkina, et al., Dokl. Earth Sci. 502 (1–2), 59–68 (2022).

    Article  Google Scholar 

  19. V. V. Smirnov, Ionization in the Troposphere (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  20. E. Kamke, Differentialgleichungen, Vol. 1: Gewöhnliche Differentialgleichungen (Akad. Verlagsgesellschaft, 1962).

Download references

ACKNOWLEDGMENTS

We are grateful to G.S. Golitsyn for useful advice and O.G. Chkhetiani for discussion of the results.

Funding

This work was supported by the Russian Science Foundation, grant no. 20-17-00214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Gorchakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mukhortova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorchakov, G.I., Kopeikin, V.M., Karpov, A.V. et al. Wind–Sand Flux Electrization over Desertified Areas. Dokl. Earth Sc. 505, 483–488 (2022). https://doi.org/10.1134/S1028334X22070078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X22070078

Keywords:

Navigation