Skip to main content
Log in

Synthesis and Study of Neodyme–Titanate Ceramic with Curium

  • GEOECOLOGY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The properties of the potential matrix of the REE–actinide fraction of high-level radioactive waste have been studied. A sample containing 2 wt % of curium was obtained by sintering at 1400°С from a charge with the (Nd,Cm)4Ti9O24 composition. The sample was studied by the conventional XRD method. Its stability in water was determined according to the standard procedure (90°C, periodic change of solution). Contrary to the preliminary experiments with Sm (a Cm imitation) the sample consisted of perovskite-like Nd0.667TiO3 titanate and a small amount of Ti3O5 instead of the (Nd,Cm)4Ti9O24 titanate phase. The reason for the discrepancy is probably associated with the reducing conditions during the synthesis of the curium-containing sample, which led to the formation of (Nd,Cm)0.667TiO3 and Ti3O5 instead of the expected phase (Nd,Cm)4Ti9O24. From the change in the X-ray diffraction patterns over time and from the data of leaching experiments, the radiation resistance of the sample and its corrosion resistance (leaching rates of elements) in water were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. A. Bogatov, P. A. Blokhin, S. S. Utkin, A. N. Dorofeev, A. I. Kiselev, P. V. Kozlov, S. A. Lukin, M. B. Remizov, and M. A. Semenov, Vopr. Radiats. Bezop., No. 3, 3–12 (2021).

  2. G. R. Lumpkin, in Experimental and Theoretical Approaches to Actinide Chemistry, Ed. by J. K. Gibson and W. A. de Jong (John Wiley, 2018), vol. 7, pp. 333–377.

    Google Scholar 

  3. S. V. Yudintsev, Radiochemistry 63 (5), 527–556 (2021).

    Article  Google Scholar 

  4. J. Li, D. Xu, W. Wang, X. Wang, Y. Mao, C. Zhang, W. Jiang, and C. Wu, Sci. Technol. Nucl. Install. 2020, 3287320 (2020).

    Google Scholar 

  5. L. Kong, I. Karatchevtseva, Y. Zhang, and T. Wei, J. Nucl. Mater. 543, 152583 (2021).

    Article  Google Scholar 

  6. S. V. Yudintsev, Dokl. Earth Sci. 460 (2), 130–137 (2015).

    Article  Google Scholar 

  7. S. S. Shoup, C. E. Bamberger, J. L. Tyree, and L. M. Anovitz, J. Solid State Chem. 127, 231–239 (1996).

    Article  Google Scholar 

  8. W. Gong and R. Zhang, J. Alloys Compd. 548, 216–221 (2013).

    Article  Google Scholar 

  9. S. V. Yudintsev, M. S. Nikolskii, B. S. Nikonov, and V. I. Malkovskii, Dokl. Earth Sci. 480 (1), 631–637 (2018).

    Article  Google Scholar 

  10. S. V. Yudintsev, V. I. Malkovsky, M. S. Nikolsky, and B. S. Nikonov, Dokl. Earth Sci. 485 (1), 303–308 (2019).

    Article  Google Scholar 

  11. K. Yang, P. Lei, T. Yao, B. Gong, Y. Wang, M. Li, J. Wang, and J. Lian, Corros. Sci. 185, 109394 (2021).

    Article  Google Scholar 

  12. K. L. Smith, M. G. Blackford, G. R. Lumpkin, and N. J. Zaluzec, Microsc. Microanal. 12, 1094–1095 (2006).

    Article  Google Scholar 

  13. S. V. Yudintsev, T. S. Livshits, J. Zhang, and R. C. Ewing, Dokl. Earth Sci. 461 (1), 247–254 (2015).

    Article  Google Scholar 

  14. S. V. Yudintsev, Radiochemistry 60 (3), 316–323 (2018).

    Article  Google Scholar 

  15. P. Mikhailova, B. Burakov, N. Eremin, A. Averin, and A. Shiryaev, Sustainability 13, 1203 (2021).

    Article  Google Scholar 

  16. T. S. Livshits, A. A. Lizin, and S. V. Tomilin, Geol. Ore Deposits 56 (6), 440–450 (2014).

    Article  Google Scholar 

  17. S. V. Yudintsev, A. A. Lizin, T. S. Livshits, S. V. Stefanovsky, S. V. Tomilin, and R. C. Ewing, J. Mater. Res. 30 (9), 1516–1528 (2015).

    Article  Google Scholar 

  18. S. V. Yudintsev, V. I. Malkovsky, and M. Yu. Kalenova, Dokl. Earth Sci. 498 (2), 525 (2021).

    Article  Google Scholar 

  19. A. M. Sankovich and I. A. Zvereva, J. Struct. Chem. 55 (4), 771–779 (2014).

    Article  Google Scholar 

  20. G. Chai, W. Huang, Q. Shi, S. Zheng, and D. Wei, J. Alloys Compd. 621, 404–410 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the reviewers for their comments, which improved the manuscript.

Funding

The work was carried out within the framework of a State Assignment of the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, and with the support of the Russian Foundation for Basic Research, project no. 18-29-12032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Yudintsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M.S. Nickolsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudintsev, S.V., Lizin, A.A. & Tomilin, S.V. Synthesis and Study of Neodyme–Titanate Ceramic with Curium. Dokl. Earth Sc. 503, 129–133 (2022). https://doi.org/10.1134/S1028334X2203014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X2203014X

Keywords:

Navigation