Skip to main content
Log in

The Correlation of Temperature, Stratus Cloudiness, and Electric Field Strength in the Atmosphere

  • GEOPHYSICS
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

This paper presents the results of observations and processing of experimental data on long-term (2012–2018) continuous electric field measurements and compares them with the meteorological parameters. Based on the field observations analyzed, the daily average electric field correlates with the daily average total cloud cover regardless of the season with a correlation coefficient of –0.48, while the correlation coefficients between the average electric field and temperature vary from –0.39 in winter to 0.41 in summer. Theoretical estimates of the stratus cloudiness effect on the electric field in the surface layer confirm a decrease in the daily average electric field strength to 70% in fair weather field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. V. Anisimov, S. V. Galichenko, K. V. Aphinogenov, and A. A. Prokhorchuk, Boundary Layer Meteorol. 167 (2), 327–348 (2017).

    Google Scholar 

  2. G. Harrison, G. Marlton, K. L. Aplin, and K. A. Nicoll, Q. J. R. Meteorol. Soc. 145 (725), 3667–3679 (2019).

    Article  Google Scholar 

  3. A. J. G. Baumgaertner et al., Atmos. Chem. Phys. 14 (16), 8599–8610 (2014).

    Article  Google Scholar 

  4. E. Williams and E. Mareev, Atmos. Res. 135–136, 208–227 (2014).

    Article  Google Scholar 

  5. M. D. King, et al., IEEE Trans. Geosci. Remote Sens. 51 (7), 3826–3852 (2013).

    Article  Google Scholar 

  6. A. Odzimek, M. Lester, and M. Kubicki, J. Geophys. Res. 115 (D18), D18207 (2010).

    Article  Google Scholar 

  7. R. G. Harrison et al., Proc. R. Soc. A: Math., Phys. Eng. Sci. 476 (2238), 20190758 (2020). https://doi.org/10.1098/rspa.2019.0758

  8. V. V. Kuznetsov, N. V. Cherneva, and I. Yu. Babakhanov, Izv., Atmos. Ocean. Phys. 43 (2), 237–243 (2007).

    Article  Google Scholar 

  9. G. M. Lucas, J. P. Thayer, and W. Deierling, J. Geophys. Res. Atmos. 122 (2), 1158–1174 (2017).

    Article  Google Scholar 

  10. A. Odzimek et al., Atmos. Res. 209, 188–203 (2018).

    Article  Google Scholar 

  11. M. V. Shatalina et al., Radiophys. Quantum Electron. (Engl. Transl.) 62 (3), 183–191 (2019).

  12. Archive of Meteorological Data. https://rp5.ru.

  13. A. V. Kalinin et al., Izv., Atmos. Ocean. Phys. 50 (3), 314–323 (2014).

    Article  Google Scholar 

  14. R. E. Holzer and D. S. Saxon, J. Geophys. Res. 57 (2), 207–216 (1952).

    Article  Google Scholar 

  15. R. Markson, Nature 273 (5658), 103–109 (1978).

    Article  Google Scholar 

  16. M. J. Rycroft et al., J. Atmos. Sol.-Terr. Phys. 69 (17–18), 2485–2509 (2007).

    Article  Google Scholar 

Download references

Funding

This work was carried out under a State Assignment of the Institute of Applied Physics, Russian Academy of Sciences, project no. 0030-202-0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Shatalina.

Additional information

Translated by E. Maslennikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shatalina, M.V., Klimenko, V.V. & Mareev, E.A. The Correlation of Temperature, Stratus Cloudiness, and Electric Field Strength in the Atmosphere. Dokl. Earth Sc. 499, 595–598 (2021). https://doi.org/10.1134/S1028334X2107014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X2107014X

Keywords:

Navigation