Skip to main content
Log in

Application of excitation-emission fluorescent matrix spectroscopy in analysis of marine organic matter

  • Oceanology
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

For the first time, on the basis of spectral fluorescent analysis of the surface seawater, we calculated the indices of composition and properties of the dissolved organic matter of the Kara Sea and identified the dominant fluorophors, whose fluorescence intensity quantitatively indicates the supply of terrigenous organic matter. The latter is transformed in various ways in the Ob River estuary and remote areas. The microbial biotransformation is probably the leading process of transformation of terrigenous organic matter actively delivered to the Kara Sea. The areas with an increased content of the humic components caused by formation of the desalinated lens are locally formed in the estuary zone of the Ob River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Stedmon, R. M. W. Amon, A. J. Rinehart, and S. A. Walker, Mar. Chem. 124, 108–118 (2011).

    Article  Google Scholar 

  2. R. Stein and R. W. McDonald, The Organic Carbon Cycle in the Arctic Ocean (Springer, Berlin, 2004).

    Book  Google Scholar 

  3. A. A. Vetrov and E. A. Romankevich, Carbon Cycle in the Russian Arctic Seas (Springer, Berlin, 2004).

    Book  Google Scholar 

  4. W. S. Pegau, J. Geophys. Res.: Oceans 107, 8035 (2002).

    Article  Google Scholar 

  5. P. G. Coble, S. A. Green, N. V. Blough, and R. B. Gagosian, Nature 348, 432–435 (1990).

    Article  Google Scholar 

  6. P. G. Coble, C. A. Schultz, and K. Mopper, Mar. Chem. 41, 173–178 (1993).

    Article  Google Scholar 

  7. A. Baker, Environ. Sci. Technol. 36, 1377–1382 (2002).

    Article  Google Scholar 

  8. I. Saadi, M. Borisover, R. Armon, and Y. Laor, Chemosphere 63(3), 530–539 (2006).

    Article  Google Scholar 

  9. R. D. Holbrook, J. H. Yen, and T. J. Grizzard, Sci. Total. Environ 361, 249–266 (2006).

    Article  Google Scholar 

  10. S. Inamdar, N. Finger, S. Singh, M. Mitchell, D. Levia, H. Bais, D. Scott, and P. McHale, Biogeochemistry 108, 55–76 (2012).

    Article  Google Scholar 

  11. T. Ohno, Environ. Sci. Technol. 36, 742–746 (2002).

    Article  Google Scholar 

  12. R. M. Cory and D. M. McKnight, Environ. Sci. Technol. 39, 8142–8149 (2005).

    Article  Google Scholar 

  13. A. J. Lawaetz and C. A. Stedmon, Appl. Spectrosc. 63(8), 936–940 (2009).

    Article  Google Scholar 

  14. A. G. Zatsepin, P. O. Zavialov, V. V. Kremenetskiy, S. G. Poyarkov, and D. M. Soloviev, Oceanology 50(5), 657–667 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ulyantsev.

Additional information

Original Russian Text © A.S. Ulyantsev, V.V. Ocherednik, E.A. Romankevich, 2015, published in Doklady Akademii Nauk, 2015, Vol. 460, No. 1, pp. 93–97.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulyantsev, A.S., Ocherednik, V.V. & Romankevich, E.A. Application of excitation-emission fluorescent matrix spectroscopy in analysis of marine organic matter. Dokl. Earth Sc. 460, 58–62 (2015). https://doi.org/10.1134/S1028334X15010080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X15010080

Keywords

Navigation