Skip to main content
Log in

Molecular-dynamic modeling of thermodynamic properties of the lunar Fe-S core

  • Geophysics
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The physical properties (density, modules of compression, heat capacity, and velocity of the P-waves) of the lunar Fe-S core are modeled with molecular dynamics and the Embedded Atom Model potential at 0–18 at % S content, temperatures up to 2500 K, and pressures up to 5 GPa. The thermodynamic calculations of the velocity of P-waves in the liquid lunar core are consistent with the interpreted results of seismic processing of the Apollo observations. According to calculations, the density of the liquid core may vary from 7.4 (pure liquid iron) to 6.75 (10 at % S at 1950 ± 50 K) g/cm3. This approach provides more reliable restrictions for the inner structure of the Moon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Kronrod and O. L. Kuskov, Izv. Phys. Solid Earth 47, 711–730 (2011).

    Article  Google Scholar 

  2. A. Khan, A. Pommier, G. Neumann, and K. Mosegaard, Tectonophysics 609, 331–352 (2013).

    Article  Google Scholar 

  3. L. L. Hood, D. L. Mitchell, R. P. Lin, et al., Geophys. Rev. Lett. 26, 2327–2330 (1999).

    Article  Google Scholar 

  4. J. G. Williams, D. H. Boggs, C. F. Yoder, et al., J. Geophys. Res. 106, 27933–27968 (2001).

    Article  Google Scholar 

  5. R. F. Garcia, J. Gagnepain-Beyneix, S. Chevrot, and P. Lognonné, Phys. Earth Planet. Inter. 188, 96–113 (2011).

    Article  Google Scholar 

  6. R. C. Weber, Lin. Pei-Ying, E. J. Garnero, Q. Williams, Ph. Lognonné, Science 331, 309–312 (2011).

    Article  Google Scholar 

  7. D. K. Belashchenko, Geochem. Internat., No. 6, 456–466 (2014).

    Google Scholar 

  8. D. K. Belashchenko, Rus. J. Phys. Chem. A 80(5), 758–768 (2006).

    Article  Google Scholar 

  9. D. K. Belashchenko and O. I. Ostrovskii, Rus. J. Phys. Chem. A 85(6), 967–976 (2011).

    Article  Google Scholar 

  10. M. I. Mendelev, S. Han, D. J. Srolovitz, et al., Phil. Mag. A 83, 3977–3994 (2003).

    Article  Google Scholar 

  11. K. Nishida, H. Terasaki, E. Ohtani, and A. Suzuki, Phys. Chem. Minerals, 417–423 (2008).

    Google Scholar 

  12. Tesfaye Firdu F. and P. Taskinen, Aalto University Publ. in Materials Science and Engineering, No. 2, 1–33 (2010).

    Google Scholar 

  13. P. S. Balog, R. A. Secco, D. C. Rubie, and D. J. Frost, J. Geophys. Res. 108(B2), 2124 (2003). doi:10.1029/2001JB001646.

    Article  Google Scholar 

  14. R. S. Hixson, M. A. Winkler, and M. L. Hodgon, Phys. Rev. 42, 6485–6491 (1990).

    Article  Google Scholar 

  15. P. M. Nasch, M. H. Manghnani, and R. A. Secco, Science 277, 219–221 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Belashchenko.

Additional information

Original Russian Text © D.K. Belashchenko, O.L. Kuskov, 2015, published in Doklady Akademii Nauk, 2015, Vol. 460, No. 1, pp. 70–73.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belashchenko, D.K., Kuskov, O.L. Molecular-dynamic modeling of thermodynamic properties of the lunar Fe-S core. Dokl. Earth Sc. 460, 37–40 (2015). https://doi.org/10.1134/S1028334X15010018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1028334X15010018

Keywords

Navigation