Skip to main content
Log in

Abstract

The results of studies of the morphology and photoelectric characteristics of nanostructured thin-film photoresistors based on CdxPb1 – xS obtained by modifying their composition are analyzed. The surface morphology of photosensitive elements is analyzed by scanning electron microscopy and high-resolution transmission electron microscopy. Auger-electron microscopy is used to determine the elemental composition of thin the films and the distribution of elements according to thickness. Photoresistors are prepared by physical sputtering and chemical-bath deposition from aqueous solutions with various additives. To increase the sensitivity, oxygen is introduced into films of the composition Cd0Pb1S: into physically sputtered layers by high-temperature annealing and into chemically deposited layers by the addition of oxidants. To obtain CdxPb1 – xS layers, hydrochemical deposition from an ammonium-citrate reaction mixture is used with varying concentrations of cadmium sulfate in the range of 0.01–0.1 mol/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. H. Preier, Semicond. Sci. Technol. 5, 12 (1990). https://www.doi.org/10.1088/0268-1242/5/3S/004

    Article  ADS  Google Scholar 

  2. O. A. Gudaev and E.E. Paul’, Avtometriya, No. 4, 14 (1994).

  3. P. J. McCann, Mid-Infrared Semiconductor Optoelectronics, Springer Series in Optical Sciences, Vol. 118 (Springer, London, 2007). https://www.doi.org/10.1007/1-84628-209-8_7

  4. A. Ishida, Y. Sugiyama, Y. Isaji, et al., Appl. Phys. Lett. 99, 121109 (2011). https://doi.org/10.1063/1.3634054

    Article  ADS  CAS  Google Scholar 

  5. A. S. Obaid, M. A. Mahdi, Z. Hassan, and M. Bououdina, Superlatties Microstruct. 52, 816 (2012). https://www.doi.org/10.1016/j.spmi.2012.06.024

  6. A. S. Z. Obaid Hassan, M. A. Mahdi, et al., Sol. Energy 89, 143 (2013). https://www.doi.org/10.1016/j.solener.2012.12.010

    Article  ADS  Google Scholar 

  7. A. M. Filachev, I. I. Taubkin, and M. A. Trishenkov, Solid-State Photoelectronics: Photoresistors and Photodetectors (Fizmatkniga, Moscow, 2012) [in Russian].

    Google Scholar 

  8. S. Sadovnikov and A. Gusev, J. Alloys Compd. 573, 65 (2013). https://www.doi.org/10.1016/J.JALLCOM.2013.03.290

    Article  CAS  Google Scholar 

  9. H. Deuk Y., M. Seung L., H. J. Yeon et al., J. Mater. Chem. 2, 20112 (2014).

    Article  Google Scholar 

  10. V. V. Burungale, R. S. Devan, and S. A. Pawar, Mater. Sci. Pol. 34, 204 (2015). https://www.doi.org/10.1515/msp-2016-0001

    Article  ADS  Google Scholar 

  11. Z. G. Zhang, X. Gao, and F. Han, Mater. Sci. Forum 913, 796 (2018). https://doi.org/10.4028/www.scientific.net/MSF.913.796

    Article  ADS  Google Scholar 

  12. V. F. Markov, L. N. Maskaeva, A. V. Shnaider, et al., Tekhnosfer. Bezop. 1 (6), 32 (2015).

    Google Scholar 

  13. I. V. Zarubin, V. F. Markov, L. N. Maskaeva, et al., J. Anal. Chem. 72, 327 (2017).

    Article  CAS  Google Scholar 

  14. Yu. I. Ravich, B. A. Efimova, and I. A. Smirnov, Methods for Studying Semiconductors as Applied to Lead Chalcogenides PbTe, PbSe, PbS (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  15. N. S. Baryshev, Properties and Applications of Narrow-Gap Semiconductors (UNIPRESS, Kazan, 2000) [in Russian].

    Google Scholar 

  16. T. S. Moss, Proc. Phys. Soc. B 66, 993 (1953). https://www.doi.org/10.1088/0370-1301/66/12/301

    Article  ADS  Google Scholar 

  17. N. K. Morozova and B. N. Miroshnikov, Semiconductors 52, 278 (2018). https://doi.org/10.1134/S106378261803017X

    Article  ADS  CAS  Google Scholar 

  18. B. N. Miroshnikov, Candidate’s Dissertation in Engineering (Moscow Power Eng. Inst., Moscow, 2016).

  19. S. A. Sokolik, A. M. Gulyaev, and I. N. Miroshnikova, Meas. Tech. 40, 85 (1997).

    Article  Google Scholar 

  20. I. Pop, C. Nascu, V. Ionescu, E. Indrea, and I. Bratu, Thin Solid Films 307, 240 (1997). https://www.doi.org/10.1016/S0040-6090(97)00304-0

    Article  ADS  CAS  Google Scholar 

  21. T. V. Larramendi, O. Calzadilla, A. Gonzalez-Arias, E. Hernández, J. Ruiz-Garcia, Thin Solid Films 389, 301 (2001). https://doi.org/10.1016/S0040-6090(01)00815-X

    Article  ADS  CAS  Google Scholar 

  22. S. Seghaier, N. Kamoun, R. Brini, et al., Mater. Chem. Phys. 97, 71 (2006). https://doi.org/10.1016/j.matchemphys.2005.07.061

    Article  CAS  Google Scholar 

  23. E. Pentia, L. Pintilie, I. Matei, and I. Pintilie, J. Mat. Res. Soc. Symp. Proc. 692, 441 (2002). https://www.doi.org/10.1557/PROC-692-H9.10.1

  24. F. A. Fernandez-Lima, Y. Gonzalez-Alfaro, E. M. Larramendi, et al., Mater. Sci. Eng., B 136, 187 (2007). https://www.doi.org/10.1016/J.MSEB.2006.09.029

  25. B. Abdallah, A. Ismail, H. Kashoua, and W. Zetoun, J. Nanomater. 2018, 1826959 (2018). https://doi.org/10.1155/2018/1826959

    Article  CAS  Google Scholar 

  26. V. G. Butkevich, E. R. Globus, and L. N. Zalevskaya Prikl. Fiz., No. 2, 52 (1999).

  27. I. N. Miroshnikova, A. L. Komissarov, and N. D. Vasil’eva, et al., Vestn. Mosk. Energ. Inst., No. 4, 57 (2010).

  28. E. Pentia, L. Pintilie, N. D. T. Botila, Thin Solid Films 434, 162 (2003). https://www.doi.org/10.1016/S0040-6090(03)00449-8

    Article  ADS  CAS  Google Scholar 

  29. Barote, M.A., A. A. Yadav, T. V. Chavan, et al., Digest J. Nanomater. Biostruct. 6, 979 (2011).

    Google Scholar 

  30. F. G. Hone, F. Ampong, T. Abza, et al., Mater. Lett. 155, 58 (2015). https://www.doi.org/10.1016/j.matlet.2015.04.074

    Article  CAS  Google Scholar 

  31. Patil, R.S., H. M. Pathan, T. P. Gujar, and C. D. Lokhande, J. Mater Sci. 41, 5723 (2006). https://www.doi.org/10.1007/s10853-006-0098-4

    Article  ADS  CAS  Google Scholar 

  32. B. N. Miroshnikov, I. N. Miroshnikova, A. I. Popov, et al., Elektron. Tekh., Ser. 3: Mikroelektron., No. 1(157), 33, (2015).

  33. I. B. Varlashov, P. V. Mitasov, and I. N Miroshnikova, Vestn. Mosk. Energ. Inst., No. 2 103 (2015).

  34. M. S. Ghamsari and M. H. Araghi, Iran. J. Sci. Technol. 29, 151 (2005). https://www.doi.org/10.22099/IJSTS.2005.2793

  35. H. S. H. Mohamed, M. Abdel-Hafiez, B. N. Miroshnikov, et al., J. Mater. Sci. Semicond. Process. 27, 725 (2014). https://www.doi.org/10.1016/j.mssp.2014.08.010

    Article  CAS  Google Scholar 

  36. B. N. Miroshnikov, I. N. Miroshnikova, A. I. Popov, et al., J. Nanoelectron. Optoelectron. 9, 783 (2015). https://www.doi.org/10.1166/jno.2014.1677

    Article  Google Scholar 

  37. R. D. Mukhamed’yarov, G. A. Kitaev, and V. M. Markova, Izv. Akad. Nauk SSSR, Neorg. Mater. 17, 1739 (1981).

    Google Scholar 

  38. L. Peña-Cabrera, A. Arizmendi-Morquecho, and P. Vorobiev, J. Non-Oxide Glasses 8, 59 (2016).

  39. J. Hernández-Borja, Y. V. Vorobiev, and R. Ramírez-Bon, Sol. Energy Mater. Sol. Cells. 95, 1882 (2011). https://www.doi.org/10.1016/j.solmat.2011.02.012

    Article  Google Scholar 

  40. D. P. Saikia, Phukan, and M. R. Das, Adv. Mater. Lett. 8, 65 (2016). https://www.doi.org/10.5185/amlett.2017.6496

    Article  Google Scholar 

  41. V. F. Markov, L. N. Maskaeva, and P. N. Ivanov, Hydrochemical Deposition of Metal Sulfide Films: Similation and Experiment (Ural. Otd. Ross. Akad. Nauk, Yekaterinburg, 2006) [in Russian].

    Google Scholar 

  42. L. M. Maskaeva, V. F. Markov, S. S. Tulenin, et al., Hydrochemical Deposition of Thin Films of Metal Chalcogenides: Practical Works, Ed. by V. F. Markov (Ural. Fed. Univ., Yekaterinburg, 2017) [in Russian].

    Google Scholar 

  43. I. N. Miroshnikova, L. N. Maskaeva, B. N. Miroshnikov, et al., Nano Hybrids Compos. 28, 39 (2020). https://www.doi.org/10.4028/www.scientific.net/NHC. 28.39

  44. L. N. Maskaeva, I. V. Vaganova, V. F. Markov, et al., Fiz. Tekh. Poluprovodn. 55, 1186 (2021). https://www.doi.org/10.21883/FTP.2021.12.51704.9726

  45. L. N. Maskaeva, E. V. Mostovshchikova, V. I. Voronin et al., Thin Solid Films 718, 38468 (2021). https://www.doi.org/10.1016/j.tsf.2020.138468

    Article  Google Scholar 

  46. L. N. Maskaeva, I. V. Vaganova, V. F. Markov, et al., J. Mater. Sci.: Mater. Electron. 32, 19230 (2021). https://www.doi.org/10.1007/s10854-021-06444-x

    CAS  Google Scholar 

  47. B. N. Miroshnikov, I. N. Miroshnikova, and A. I. Popov, Semiconductors 52, 231 (2018). https://doi.org/10.1134/S1063782618020082

    Article  ADS  CAS  Google Scholar 

  48. L. N. Maskaeva, I. N. Miroshnikova, I. V. Vaganova, et al., AIP Conf. Proc. 2388, 030021 (2021). https://doi.org/10.1063/5.0069585

    Article  CAS  Google Scholar 

  49. L. N. Maskaeva, I. V. Vaganova, and V. F. Markov, Phys. Chem. Chem. Phys. 23, 10600 (2021). https://www.doi.org/10.1039/d1cp00775k

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research, grant no. 18-29-11 051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Miroshnikova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miroshnikova, I.N., Maskaeva, L.N., Miroshnikov, B.N. et al. Modification of Nanocrystalline Films Based on Lead Sulfide. J. Surf. Investig. 17 (Suppl 1), S360–S370 (2023). https://doi.org/10.1134/S1027451023070339

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023070339

Keywords:

Navigation