Skip to main content
Log in

Prospects for the Application of Liquid Glass for Smoothing the Surface of Optical Elements

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

It is proposed to use “liquid glasses” of various compositions as substrates for space-based X-ray optical elements. One of the main requirements for such materials is the smallest weight and the possibility of surface treatment. Special requirements are imposed on the surface roughness, which should be less than 1 nm, and the shape accuracy should be at the level of a few nanometers. It is proposed to use a class of compounds based on alkali-metal silicates or strong organic bases as a material that makes it possible to form the required shape and surface roughness, as well as to provide subsequent processing. The effect of smoothing the surface roughness of liquid glass of three different compositions deposited onto chromium and nickel films is studied. The roughness of all surfaces before and after the deposition of structures is measured using an atomic force microscope. The roughness was calculated using the power spectral density function (PSD function). The structures deposited onto the surface were irradiated with accelerated argon ions with an energy of 800 eV. The etching depth and effective roughness were measured. One of the studied compositions shows a satisfactory reduction in the roughness and stability of this effect during ion etching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).

    Book  Google Scholar 

  2. N. I. Chkhalo, M. S. Mikhaylenko, A. V. Mil’kov, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, I. L. Strulya, M. V. Zorina, and S. Yu. Zuev, Proc. SPIE 10235, 102350 (2017). https://doi.org/10.1117/12.2269312

    Article  Google Scholar 

  3. M. S. Mikhailenko, N. I. Chkhalo, A. E. Pestov, V. N. Polkovnikov, M. V. Zorina, S. Yu. Zuev, D. S. Kazakov, A. V. Milkov, I. L. Strulya, V. A. Filichkina, and A. S. Kozlov, Appl. Opt. 58, 3652 (2019).

    Article  Google Scholar 

  4. M. S. Mikhailenko, M. V. Zorina, D. E. Pariev, A. E. Pestov, N. N. Salashchenko, I. L. Strulya, S. A. Churin, and N. I. Chkhalo, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 485 (2017). https://doi.org/10.1134/S102745101703017X

    Article  Google Scholar 

  5. O. L. Figovskii and P. G. Kudryavtsev, Inzh. Vestn. Dona, No. 2 (29), 117 (2014).

    Google Scholar 

  6. V. I. Korneev and V. V. Danilov, Liquid and Soluble Glass (Stroiizdat, St. Petersburg, 1996) [in Russian].

    Google Scholar 

  7. N. I. Chkhalo, I. A. Kaskov, I. V. Malyshev, M. S. Mikhay-lenko, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, M. N. Toropov, and I. G. Zabrodin, Precis. Eng. 48, 338 (2017). https://doi.org/10.1016/j.precisioneng.2017.01.004

    Article  Google Scholar 

  8. N. I. Chkhalo, N. N. Salashchenko, and M. V. Zorina, Rev. Sci. Instrum. 86, 016102 (2015). https://doi.org/10.1063/1.4905336

    Article  CAS  Google Scholar 

  9. A. E. Shupenev, N. S. Pankova, I. S. Korshunov, and A. G. Grigor’yants, Izv. Vyssh. Uchebn. Zaved., Mashinostr. 4, 18 (2019). https://doi.org/10.18698/0536-1044-2019-4-18-27

    Article  Google Scholar 

  10. Yu. M. Nikolaenko, A. S. Korneevets, N. B. Efros, V. V. Burkhovetskii, and I. Yu. Reshidova, Tech. Phys. Lett. 45, 679 (2019). https://doi.org/10.1134/S1063785019070083

    Article  CAS  Google Scholar 

  11. A. P. Firstov, Liteishchik Ross., No. 7, 15 (2015).

  12. A. P. Firstov, Evraz. Soyuz Uch., No. 10(67), 61 (2019). https://doi.org/10.31618/ESU.2413-9335.2019.6.67.417

  13. N. E. Nikolaev and V. Yu. Miretskii, USSR Inventor’s Certificate No. 1377262, Byull. Izobret., No. 8 (1988).

  14. V. B. Obukhova and G. N. Pesternikov, RF Patent No. 2683320, Byull. Izobret., No. 10 (2019).

  15. A. N. Levichev, N. G. Pavlyukovich, M. M. Kaziev, and P. M. Valetskii, RF Patent No. 22999229, Byull. Izobret., No. 14 (2007).

  16. H. H. W. Weldes, US Patent No. 3239549 (1966).

  17. H. H. W. Weldes, US Patent No. 3383386 (1968).

  18. P. C. Yates, US Patent No. 3630954 (1971).

  19. H. H. W. Weldes, US Patent No. 3769309 (1973).

  20. P. G. Kudryavtsev and O. L. Figovskii, Nanotekhnol. Stroit. 6 (6), 27 (2014). https://doi.org/10.15828/2075-8545-2014-6-6-27-45

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out as a part of state assignment no. 0030-2021-0022 with the use of equipment of the Center for Collective Use “Physics and Technologies of Microstructures and Nanostructures” at the Institute of Physics of Microstructures, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Petrova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailenko, M.S., Zorina, M.V., Petrova, D.V. et al. Prospects for the Application of Liquid Glass for Smoothing the Surface of Optical Elements. J. Surf. Investig. 17, 1332–1337 (2023). https://doi.org/10.1134/S1027451023060368

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023060368

Keywords:

Navigation