Skip to main content
Log in

Magnetotransport Studies of (Cd1 xZnx)3As2 at High Pressures

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The resistivity ρ, magnetoresistance Δρxx0(P), and Hall coefficient RH are measured in a (Cd1 ‒  xZnx)3As2 sample with х = 0.31 under the action of uniform pressure and at various temperatures in the range 80–400 K. These samples are obtained by the modified Bridgman method. The composition of the samples and their homogeneity are controlled by X-ray phase analysis and energy-dispersive X-ray spectroscopy. The results of energy dispersive X-ray spectroscopy show that the distribution of elements in the sample is uniform. It is found that the resistivity increases with increasing temperature, and the change in ρ(T) has a metallic character. The Hall coefficient RH in the field decreases slightly with increasing temperature and retains a negative sign throughout the entire range under study. With increasing pressure, anomalies are observed in the baric dependences of the electrical resistivity ρ(Р), magnetoresistance Δρxx0(Р), and the Hall coefficient RH(Р). Increasing the uniform pressure leads to suppression of the positive magnetoresistance. In the phase-transition region, the negative magnetoresistance at a pressure of Р (2.4–2.7) GPa in a field of 5 kOe is a maximum value of 1.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. I. Crassee, R. Sankar, W.-L. Lee, A. Akrap, and M. Orlita, Phys. Rev. Mater. 2, 120302 (2018). https://doi.org/10.1103/PhysRevMaterials.2.120302

    Article  CAS  Google Scholar 

  2. Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B 88, 125427 (2013). https://doi.org/10.1103/PhysRevB.88.125427

    Article  CAS  Google Scholar 

  3. Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012). https://doi.org/10.1103/PhysRevB.85.195320

    Article  CAS  Google Scholar 

  4. Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, Nat. Mater. 13, 677 (2014). https://doi.org/10.1038/nmat3990

    Article  CAS  Google Scholar 

  5. S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Buchner, and R. J. Cava, Phys. Rev. Lett. 113, 027603 (2014). https://doi.org/10.1103/PhysRevLett.113.027603

    Article  CAS  Google Scholar 

  6. S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, Nat. Mater. 13, 851 (2014). https://doi.org/10.1038/nmat4023.82

    Article  CAS  Google Scholar 

  7. H. Li, H.-W. Wang, H. He, J. Wang, and S.-Q. Shen, Phys. Rev. B 97, 201110 (2018). https://doi.org/10.1103/PhysRevB.97.201110

    Article  CAS  Google Scholar 

  8. M. Wu, G. Zheng, W. Chu, Y. Liu, W. Gao, H. Zhang, J. Lu, Y. Han, J. Zhou, W. Ning, and M. Tian, Phys. Rev. B 98, 161110 (2018). https://doi.org/10.1103/PhysRevB.98.161110

    Article  Google Scholar 

  9. T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Nat. Mater. 14, 280 (2015). https://doi.org/10.1038/nmat4143

    Article  CAS  Google Scholar 

  10. W. J. Turner, A. S. Fischler, and W. E. Reese, Phys. Rev. 121, 759 (1961). https://doi.org/10.1103/PhysRev.121.759

    Article  CAS  Google Scholar 

  11. G. Zheng, M. Wu, H. Zhang, W. Chu, W. Gao, J. Lu, Y. Han, J. Yang, H. Du, W. Ning, Y. Zhang, and M. Tian, Phys. Rev. B 96, 121407 (2017). https://doi.org/10.1103/PhysRevB.96.121407

    Article  Google Scholar 

  12. M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010). https://doi.org/10.1103/RevModPhys.82.3045

    Article  CAS  Google Scholar 

  13. A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011). https://doi.org/10.1103/PhysRevLett.107.127205

    Article  CAS  Google Scholar 

  14. X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011). https://doi.org/10.1103/PhysRevB.83.205101

    Article  CAS  Google Scholar 

  15. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011). https://doi.org/10.1103/RevModPhys.83.1057

    Article  CAS  Google Scholar 

  16. L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008). https://doi.org/10.1103/PhysRevLett.100.096407.83

    Article  Google Scholar 

  17. L. He, Y. Jia, S. Zhang, X. Hong, C. Jin, and S. Li, NPJ Quantum Mater. 1, 16014 (2016). https://doi.org/10.1038/npjquantmats.2016.14

    Article  Google Scholar 

  18. E. K. Arushanov, Prog. Cryst. Growth Charact. Mater. 25, 131 (1992).

    Article  CAS  Google Scholar 

  19. S. Weglowski and K. Lukaszewicz, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 16, 177 (1968).

    CAS  Google Scholar 

  20. R. J. Wagner, E. D. Palik, and E. M. Swiggard, J. Phys. Chem. Solids Suppl. 1, 471 (1971).

    Google Scholar 

  21. H. Lu, X. Zhang, Y. Bian, and S. Jia, Sci. Rep. 7, 3148 (2017). https://doi.org/10.1038/s41598-017-03559-2

    Article  CAS  Google Scholar 

  22. L. Żdanowicz and W. Zdanowicz, Phys. Status Solidi 6, 227 (1964).

    Article  Google Scholar 

  23. W. Żdanowicz, K. Lukaszewicz, and W. Trzebiatowski, Bull. Acad. Pol. Sci., Ser. Chim. 12, 169 (1964).

    Google Scholar 

  24. V. A. Rubtsov, V. M. Trukhan, and V. N. Yakimovich, Dokl. Akad. Nauk Belaruss. SSR 54, 407 (1990).

    Google Scholar 

  25. L. M. Rogers, R. M. Jenkins, and A. J. Crocker, J. Phys. D: Appl. Phys. 4, 793 (1971).

    Article  CAS  Google Scholar 

  26. A. V. Galeeva, I. V. Krylov, K. A. Drozdov, A. F. Knjazev, A. V. Kochura, A. P. Kuzmenko, V. S. Zakhvalinskii, S. N. Danilov, L. I. Ryabova, and D. R. Khokhlov, Belstein J. Nanotechnol. 8, 167 (2017). https://doi.org/10.3762/bjnano.8.17

    Article  CAS  Google Scholar 

  27. A. Yu. Mollaev, L. A. Saypulaeva, R. K. Arslanov, S. F. Gabibov, and S. F. Marenkin, High Pressure Res. 22, 181 (2002). https://doi.org/10.1080/08957950211335

    Article  Google Scholar 

  28. J. Cisowski and W. Zdanowicz, Phys. Stat. Sol. 19, 741 (1973). https://doi.org/10.1002/PSSA.2210190241

    Article  CAS  Google Scholar 

  29. L. G. Khvostantsev, V. N. Slesarev, and V. V. Brazhkin, High Pressure Res. 24, 371 (2004). https://doi.org/10.1080/08957950412331298761

    Article  CAS  Google Scholar 

  30. O. Ivanov, V. Zakhvalinskii, T. Nikulicheva, M. Yaprintsev, and S. Ivanichikhin, Phys. Status Solidi RRL 12, 1800386 (2018). https://doi.org/10.1002/pssr.201800386

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Saypulaeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saypulaeva, L.A., Zakhvalinskii, V.S., Alibekov, A.G. et al. Magnetotransport Studies of (Cd1 xZnx)3As2 at High Pressures. J. Surf. Investig. 17, 1110–1115 (2023). https://doi.org/10.1134/S1027451023050312

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023050312

Keywords:

Navigation