Skip to main content
Log in

On the Radiation Stability of ZnO Powders Modified with Native Nanoparticles

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

We investigate changes in diffuse reflectance spectra (∆ρλ) and integrated absorption coefficient (Δаs) in the range of 0.2–2.5 µm after the modification of mZnO zinc-oxide powders with particles of a few micrometers in size with native nZnO nanoparticles in the concentration range of 0.1–10.0 wt %. The reflectance coefficient (ρ) decreases in the range of 0.4–1.0 µm and increases between 1.0–2.5 µm in the modified mZnO/nZnO powders. The electron irradiation (Е = 30 keV, Ф = 2 × 1016 cm–2) of mZnO, nZnO, and mZnO/nZnO powders with different concentrations of nanoparticles shows that the optimal concentration of nanoparticles is 5 wt %. The radiation resistance of the modified powder at this concentration increases by a factor of 2.95; the radiation resistance of the nanopowder is more than twofold higher than that of a powder with particles in the micrometer range. Upon irradiation with electrons, all three types of powders form their own point defects, which absorb in the visible region, and free electrons, which absorb in the near-infrared (IR) region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. V. Neshchimenko, Doctoral Dissertation in Mathematics and Physics (Inst. Strength Physics Mater. Sci., Sib. Branch, Russ. Acad. Sci., Tomsk, 2017).

  2. R. R. Brown, L. B. Fogdall, and S. S. Cannaday, Prog. Astronaut.: Therm. Des. Principles Spacecraft Entry 21, 697 (1969).

    CAS  Google Scholar 

  3. V. Heydari and Z. Bahreini, J. Coat. Technol. Res. 15, 223 (2018).

    Article  CAS  Google Scholar 

  4. R. Mastan, Z. A. Khorsand, and S. R. Pilevar, Ceram. Int. 46, 8582 (2020).

    Article  CAS  Google Scholar 

  5. H. Chen, P. Li, and H. Zhou, Mater. Res. Bull. 146, 111572 (2022).

    Article  CAS  Google Scholar 

  6. M. M. Mikhailov, V. V. Neshchimenko, C. Li, S. He, and D. Yang, J. Mater. Res. 24, 19 (2009).

    Article  CAS  Google Scholar 

  7. L. G. Kositsyn, M. M. Mikhailov, N. Y. Kuznetsov, and M. I. Dvoretskii, Instrum. Exp. Tech. 28, 929 (1985).

    Google Scholar 

  8. ASTM E490-00a: Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables (ASTM Int., 2005). https://www.astm.org/e0490-00ar19.html.

  9. ASTM E903-96: Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres (ASTM Int., 2005). https://www.astm.org/e0903-96.html.

  10. N. Djaja, D. Montja, and R. Saleh, Adv. Mater. Phys. Chem. 3, 33 (2013).

    Article  Google Scholar 

  11. H. Shokry Hassan, M. F. Elkady, A. H. El-Shazly, and H. S. Bamufleh, J. Nanomater. 2014, 967492 (2014).

    Article  Google Scholar 

  12. A. Davydov, Molecular Spectroscopy of Oxide Catalyst Surfaces (Wiley, Chichester, 2003).

    Book  Google Scholar 

  13. F. Boccuzzi, C. Morterra, R. Scala, and A. Zecchina, J. Chem. Soc., Faraday Trans. 277, 2059 (1981).

    Article  Google Scholar 

  14. F. Boccuzzi, E. Borello, A. Zecchina, A. Bossi, and M. Camia, J. Catal. 51, 150 (1978).

    Article  CAS  Google Scholar 

  15. J. Saussey, J. -C. Lavalley, and C. Bovet, J. Chem. Soc., Faraday Trans. 78, 1457 (1982).

    Article  CAS  Google Scholar 

  16. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1986; Mir, Moscow, 1991).

  17. E. Indrajith Naik, T.S. Sunil Kumar Naik, E. Pradeepa, Simranjeet Singh, and H.S. Bhojya Naik, Mater. Chem. Phys. 281, 125860 (2022).

    Article  CAS  Google Scholar 

  18. M. M. Mikhailov and M. I. Dvoretskii, Sov. Phys. J. 31, 591 (1988).

    Article  Google Scholar 

  19. K. V. Shalimova, Physics of Semiconductors (Energiya, Moscow, 1976) [in Russian].

    Google Scholar 

  20. M. M. Mikhailov, V. V. Neshchimenko, and C. Li, Dyes Pigm. 131, 256 (2016).

    Article  CAS  Google Scholar 

  21. A. Abu-Shamleh, H. Alzubi, and A. Alajlouni, Photonics Nanostruct.—Fundam. Appl. 43, 100862 (2021).

    Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 21-72-10032, https://rscf.ru/project/21-72-10032/.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. Mikhailov or S. A. Yuryev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, M.M., Yuryev, S.A., Lapin, A.N. et al. On the Radiation Stability of ZnO Powders Modified with Native Nanoparticles. J. Surf. Investig. 17, 990–994 (2023). https://doi.org/10.1134/S1027451023050075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451023050075

Keywords:

Navigation