Skip to main content
Log in

Phasometry Methods in Polarized Neutron Reflectometry for Studying Magnetism of Layered Structures

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Phasometry methods in polarized neutron reflectometry, which come down to measurement of the differences in the phases of reflection matrix elements, are considered. Basic formulas for extracting the phase differences from polarized neutron reflection data are presented. The phase information will supplement the data obtained with standard polarized neutron reflectometry. The external field at the sample requires a beam with a precession front parallel to the sample surface. Such a beam may be prepared using neutron spin manipulation optics. The effect of the external field on the magnetic state of the sample and instrumental depolarization due to the dependence of the spin precession angle in the external field on the wavelength and the neutron path length restrict the application of phasometry techniques. Measurements with the sample in zero field are found to be more promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. G. P. Felcher, Phys. Rev. B 24, 1595 (1981).

    Article  CAS  Google Scholar 

  2. C. Majkrzak, Phys. B (Amsterdam, Neth.) 173, 75 (1991).

  3. J. Ankner and G. Felcher, J. Magn. Magn. Mater. 200, 741 (1999).

    Article  CAS  Google Scholar 

  4. M. R. Fitzsimmons, S. Bader, J. Borchers, et al., J. Magn. Magn. Mater. 271, 103 (2004).

    Article  CAS  Google Scholar 

  5. M. Fitzsimmons, B. Kirby, S. Roy, et al., Phys. Rev. B 75, 214412 (2007).

    Article  Google Scholar 

  6. M. Li, W. Cui, J. Yu, et al., Phys. Rev. B 91, 014427 (2015).

    Article  Google Scholar 

  7. F. Wang, D. Xiao, W. Yuan, et al., Nano Lett. 19, 2945 (2019).

    Article  CAS  Google Scholar 

  8. X. Zhan, G. Li, J. Cai, et al., Sci. Rep. 9, 1 (2019).

    Article  Google Scholar 

  9. R. Akiyama, R. Ishikawa, K. Akutsu, et al., J. Phys. Chem. Lett. 13, 8228 (2022).

  10. R. F. Need, S.-K. Bac, X. Liu, et al., Phys. Rev. Mater. 4, 054410 (2020).

    Article  CAS  Google Scholar 

  11. S. Bhattacharyya, G. Akhgar, M. Gebert, et al., Adv. Mater. 33, 2007795 (2021).

    Article  CAS  Google Scholar 

  12. N. Andrejevic, Zh. Chen, Th. Nguyen, et al., Appl. Phys. Rev. 9, 011421 (2022).

  13. N. K. Pleshanov, Phys. B (Amsterdam, Neth.) 269, 79 (1999).

  14. V. K. Ignatovich, JETP Lett. 28, 286 (1978).

    Google Scholar 

  15. N. K. Pleshanov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 1143 (2019).

    Article  CAS  Google Scholar 

  16. N. K. Pleshanov, Z. Phys. B 94, 233 (1994).

    Article  CAS  Google Scholar 

  17. N. K. Pleshanov V. Bodnarchuk, R. Gähler, et al., Phys. B (Amsterdam, Neth.) 297, 126 (2001).

  18. N. K. Pleshanov, Nucl. Instrum. Methods Phys. Res., Sect. A 853, 61 (2017).

    CAS  Google Scholar 

  19. G. P. Felcher, S. Adenwalla, V. O. De Haan, and A. A. van Well, Nature 377, 409 (1995).

    Article  CAS  Google Scholar 

  20. D. A. Korneev, V. I. Bodnarchuk, and V. K. Ignatovich, JETP Lett. 63, 944 (1996).

    Article  Google Scholar 

  21. N. K. Pleshanov, L. A. Axel’rod, V. N. Zabenkin, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2, 846 (2008).

    Article  Google Scholar 

  22. N. K. Pleshanov and I. N. Pleshanov, Preprint No. 3068 (Petersburg Inst. Nucl. Phys., Natl. Res. Center “Kurchatov Institute,” Gatchina, 2022).

  23. N. K. Pleshanov, Nucl. Instrum. Methods Phys. Res., Sect. A 820, 146 (2016).

    CAS  Google Scholar 

  24. N. K. Pleshanov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 24 (2015).

    Article  CAS  Google Scholar 

  25. N. K. Pleshanov and V. G. Syromyatnikov, Nucl. Instrum. Methods Phys. Res., Sect. A 837, 40 (2016).

    CAS  Google Scholar 

  26. N. K. Pleshanov, Nucl. Instrum. Methods Phys. Res., Sect. A 613, 15 (2010).

    CAS  Google Scholar 

  27. N. K. Pleshanov, A. P. Bulkin, and V. G. Syromyatnikov, Phys. Solid State 52, 1018 (2010).

    Article  CAS  Google Scholar 

  28. N. K. Pleshanov, A. P. Bulkin, and V. G. Syromyatnikov, Nucl. Instrum. Methods Phys. Res., Sect. A 634, S63 (2011).

    CAS  Google Scholar 

  29. C. F. Majkrzak and N. F. Berk, Appl. Phys. A 74, 67 (2002).

    Article  Google Scholar 

  30. Yu. A. Salamatov and E. A. Kravtsov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 1169 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Pleshanov.

Ethics declarations

We declare that we have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pleshanov, N.K. Phasometry Methods in Polarized Neutron Reflectometry for Studying Magnetism of Layered Structures. J. Surf. Investig. 16, 1263–1273 (2022). https://doi.org/10.1134/S1027451022060465

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022060465

Keywords:

Navigation