Skip to main content
Log in

Modification of the Microstructure of PTFE in a Supercritical Fluid

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The influence of polytetrafluoroethylene (PTFE) processing in sc-CO2 and sc-PFO above the melting point on the microstructure and characteristics of phase transitions is studied using high-resolution scanning electron microscopy and differential scanning calorimetry (DSC). It is shown that, depending on the crystallization conditions, after the processing of PTFE in the supercritical fluid, the formation of a microstructure with a radial orientation of fibrils atypical for this polymer is possible. The processing of PTFE in the supercritical fluid leads to an irreversible increase in the heat of melting and crystallization and, accordingly, to an increase in the degree of crystallinity by 1.5–2 times compared to the initial values. The growth in the crystallinity is explained by a change in the microstructure of the PTFE melt in the supercritical fluid: the release of a part of segments of macromolecules from physical knots during the process of swelling and plasticization of the polymer matrix. Disentanglement of such knots that limit molecular mobility contributes to an increase in the number of macromolecular units involved in the formation of crystalline domains and to an irreversible increase in the degree of crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. M. Buznik, Fluoropolymer Materials (NTL, Tomsk, 2017) [in Russian].

    Google Scholar 

  2. S. G. Ostrer, Fluoropolymers in the Chemical Industry (Perm, 2019) [in Russian].

    Google Scholar 

  3. S. Ebnesajjad, Fluoroplastics, Vol. 1: The Definitive User’s Guide and Data Book (William Andrew, Oxford, 2015).

  4. N. P. Istomin and A. P. Semenov, Antifriction Properties of Composite Materials Based on Fluoropolymers (Nauka, Moscow, 1984), p. 147 [in Russian].

    Google Scholar 

  5. C. J. Speerschneider and C. H. Li, J. Appl. Phys. 34, 3004 (1963).

    Article  Google Scholar 

  6. T. A. Blanchet, in Polymer Tribology, Ed. by S. K. Sinha and B. J. Briscoe (Imperial Colledge Press, London, 2009), p. 347.

    Google Scholar 

  7. S. Bahadur and D. Tabor, Wear 98, 1 (1984).

    Article  CAS  Google Scholar 

  8. V. M. Buznik, in Fluoropolymer Materials (Izd-vo NTL, Tomsk, 2017), p. 340.

    Google Scholar 

  9. S. A. Khatipov, S. A. Serov, N. V. Sadovskaya, and E. M. Konova, Radiat. Phys. Chem. 8, 256 (2012).

    Article  Google Scholar 

  10. S. A. Khatipov, N. V. Sadovskaya, A. Yu. Obvintsev, and A. N. Kasatkin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 1184 (2015). https://doi.org/10.1134/S102745101505033X

    Article  CAS  Google Scholar 

  11. S. A. Khatipov, S. A. Serov, and N. V. Sadovskaya, Vopr. Materialoved., No. 4(72), 191 (2012).

  12. S. A. Khatipov, E. M. Konova, and N. A. Artamonov, Ross. Khim. Zh. 52 (5), 64 (2008).

    CAS  Google Scholar 

  13. B. Wunderlich, Macromolecular Physics, Vol. 1: Crystal Structure, Morphology, Defects (Academic, New York, 1973).

  14. R. B. Prime and B. Wunderlich, J. Polym. Sci. A 7, 1969 (1969).

    Google Scholar 

  15. W. H. Tuminello and G. T. Dee, Macromolecules 27, 2061 (1994).

    Article  Google Scholar 

  16. W. H. Tuminello, G. T. Dee, and M. A. McHugh, Macromolecules 28, 1506 (1995).

    Article  CAS  Google Scholar 

  17. Yu. E. Vopilov, L. N. Nikitin, G. Yu. Yurkov, E. P. Kharitonova, A. R. Khokhlov, and V. M. Bouznik, J. Supercrit. Fluids 62, 204 (2012).

    Article  CAS  Google Scholar 

  18. B. Chu, C. Wu, and W. Buck, Macromolecules 22, 831 (1989).

    Article  CAS  Google Scholar 

  19. P. Smith and K. H. Gardner, Macromolecules 18, 1222 (1985).

    Article  CAS  Google Scholar 

  20. NIST Chemistry Web Book. https://webbook.nist.gov/cgi/fluid.

  21. S. F. Lau, H. Suzuki, and B. Wunderlich, J. Polym. Sci.: Polym. Phys 22, 379 (1984).

    CAS  Google Scholar 

  22. Yu. A. Panshin, S. G. Malkevich, and Ts. S. Dunaevskaya, Fluoroplasty (Khimiya, Leningrad, 1978) [in Russian].

    Google Scholar 

  23. Fluoropolymers, Ed. by L. A. Wall (Wiley, New York, 1972; Mir. Moscow, 1975).

  24. C. W. Bunn, A. J. Cobbold, and R. P. Palmer, J. Polym. Sci. 28, 365 (1958).

    Article  CAS  Google Scholar 

  25. T. Suwa, M Takeshita, and S. Machi, J. Appl. Polym. Sci. 17, 3253 (1973).

    Article  CAS  Google Scholar 

  26. B. Fuchs, U. Lappan, K. Lunkwitz, and U. Scheler, Macromolecules 35, 9079 (2002).

    Article  CAS  Google Scholar 

  27. V. K. Milinchuk, E. R. Klinshpont, and S. Ya. Pshezhetskii, Macroradicals (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Researcher of the Department of Polymers and Crystals, Faculty of Physics, Moscow State University, Ph.D. M. S. Kondratenko; Associate Professor of the Department of Polymers and Crystals, Faculty of Physics, Moscow State University, Dr. Sci. M. O. Gallyamov; General Director of Limited Liability Company “Mineral” M. A. Arkhipov; Senior Researcher of Limited Liability Company “NPP Arflon” S. A. Serov for help in preparing the experiment and discussion of the results.

Funding

The study was supported by the Ministry of Science and Higher Education as a part of the State Assignment of the Federal Scientific Research Center “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Khatipov or N. V. Sadovskaya.

Ethics declarations

We declare that we have no conflict of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatipov, S.A., Sadovskaya, N.V., Avilov, A.S. et al. Modification of the Microstructure of PTFE in a Supercritical Fluid. J. Surf. Investig. 16, 1150–1158 (2022). https://doi.org/10.1134/S1027451022060404

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022060404

Keywords:

Navigation