Skip to main content
Log in

Nonlinear Surface Waves near the Interface between a Graded-Index Layer and a Medium with the Sign of the Kerr Nonlinearity Varying Depending on the Electric Field

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

We consider the contact of a medium in which the refractive index linearly decreases depending on the distance to a nonlinear medium, where the sign of the Kerr nonlinearity can change abruptly when the electric-field strength reaches a threshold value. It is established that surface waves of three types can propagate along such a contact, depending on the sign of the nonlinearity and the range of values of the effective refractive index. Explicit analytical expressions are obtained for the distribution of the electric-field strength in the transverse direction with respect to the contact plane, which are exact solutions of the formulated nonlinear equations. It is shown that the formation of electric-field distributions corresponding to waveguide modes with several intensity maxima is possible in the layer with a refractive-index gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Surface Waves: New Trends and Developments, Ed. by F. Ebrahimi (IntechOpen, 2018).

    Google Scholar 

  2. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, 2003).

    Google Scholar 

  3. D. Dragoman and M. Dragoman, Advanced Optoelectronic Devices (Springer, Berlin, 1999).

    Book  Google Scholar 

  4. J. Chen and K. Rong, Mater. Chem. Front. 5, 4502 (2021). https://doi.org/10.1039/D0QM01118E

    Article  CAS  Google Scholar 

  5. S. Leble, Waveguide Propagation of Nonlinear Waves (Springer, Berlin, 2019).

    Book  Google Scholar 

  6. N. N. Akhmediev, V. I. Korneev, and Yu. V. Kuz’menko, Zh. Eksp. Teor. Fiz. 88, 107 (1985).

    Google Scholar 

  7. D. Mikhalake, R. G. Nazmitdinov, and V. K. Fedyanin, Fiz. At. Yadra Elem. Chastits 20, 198 (1989).

    Google Scholar 

  8. Y. V. Kartashov, B. A. Malomed, and L. Torner, Rev. Mod. Phys. 83, 247 (2011).

    Article  Google Scholar 

  9. D. Mihalache, Rom. Rep. Phys. 73, 403 (2021).

    Google Scholar 

  10. T. Touam and F. Yergeau, Appl. Opt. 32, 309 (1993).

    Article  CAS  Google Scholar 

  11. S. Chatterjee and P. R. Chaudhuri, J. Basic Appl. Phys. 3, 1 (2014).

    Google Scholar 

  12. M. Cada, M. Qasymeh, and J. Pistora, Wave Propagation Theories and Applications (IntechOpen, 2013).

    Google Scholar 

  13. S. E. Savotchenko, Rom. Rep. Phys. 72, 412 (2020).

    Google Scholar 

  14. S. E. Savotchenko, Solid State Commun. 325, 114165 (2021).

    Article  CAS  Google Scholar 

  15. S. E. Savotchenko, Opt. Quantum Electron. 53, 365 (2021).

    Article  Google Scholar 

  16. A. E. Kaplan, IEEE J. Quantum Electron. QE-21, 1538 (1985).

    Article  Google Scholar 

  17. R. H. Enns, S. S. Rangnekar, and A. E. Kaplan, Phys. Rev. A 35, 466 (1987).

    Article  CAS  Google Scholar 

  18. R. H. Enns, S. S. Rangnekar, and A. E. Kaplan, Phys. Rev. A 36, 1270 (1987).

    Article  CAS  Google Scholar 

  19. P. I. Khadzhi and L. V. Fedorov, Zh. Tekh. Fiz. 61, 110 (1991).

    Google Scholar 

  20. N. N. Beletskii and E. A. Gasan, Fiz. Tverd. Tela 36, 647 (1994).

    CAS  Google Scholar 

  21. K. D. Lyakhomskaya and P. I. Khadzhi, Tech. Phys. 45, 1457 (2000).

    Article  CAS  Google Scholar 

  22. S. E. Savotchenko, J. Opt. 22, 065504 (2020).

    Article  CAS  Google Scholar 

  23. S. E. Savotchenko, J. Exp. Theor. Phys. 131, 468 (2020).

    Article  CAS  Google Scholar 

  24. S. E. Savotchenko, Tech. Phys. Lett. 46, 823 (2020).

    Article  CAS  Google Scholar 

  25. S. E. Savotchenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 722 (2020).

    Article  CAS  Google Scholar 

  26. S. E. Savotchenko, Eur. Phys. J. B 93, 182 (2020).

    Article  CAS  Google Scholar 

  27. S. E. Savotchenko, Opt. Spectrosc. 129, 239 (2021).

    Article  CAS  Google Scholar 

  28. P. I. Khadzhi, G. D. Shibarshina, and A. Kh. Rotaru, Optical Bistability in a System of Coherent Excitons and Biexcitons in Semiconductors (Shtiintsa, Kishinev, 1988).

  29. P. I. Khadzhi, A. M. Rusanov, and S. L. Gaivan, Quantum Electron. 29, 539 (1999).

    Article  CAS  Google Scholar 

  30. A. V. Corovai and P. I. Khadzhi, Quantum Electron. 31, 937 (2001).

    Article  CAS  Google Scholar 

  31. P. I. Khadzhi and A. V. Korovai, Quantum Electron. 32, 711 (2002).

    Article  CAS  Google Scholar 

  32. A. J. Hussein, S. A. Taya, D. Vigneswaran, R. Udiayakumar, A. Upadhyay, T. Anwar, and I. S. Amiri, Results Phys. 20, 103734 (2021).

    Article  Google Scholar 

  33. S. E. Savotchenko, Optik 252, 168542 (2022).

    Article  Google Scholar 

  34. M. J. Adams, An Introduction To Optical Waveguides (Wiley, Chichester, 1981).

    Google Scholar 

  35. C.-L. Chen, Foundations for Guided-Wave Optics (Wiley, Hoboken, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Savotchenko.

Ethics declarations

I declare that I have no conflicts of interest.

Additional information

Translated by D. Churochkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savotchenko, S.E. Nonlinear Surface Waves near the Interface between a Graded-Index Layer and a Medium with the Sign of the Kerr Nonlinearity Varying Depending on the Electric Field. J. Surf. Investig. 16, 1003–1011 (2022). https://doi.org/10.1134/S1027451022060210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022060210

Keywords:

Navigation