Skip to main content
Log in

Test Objects with a Rectangular Profile for SEM. 5. Mechanisms of SEM Signal Formation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The mechanisms of signal formation on scanning electron microscopes operating in the mode of slow secondary electron collection are considered. Silicon grooves with a rectangular profile are used as test objects. The results of experiments with parallel and inclined positions of the electron-probe axis relative to the groove walls are presented. The occurrence of two mechanisms of secondary electron emission is demonstrated. One mechanism is the ionization of test object atoms by incident electrons. The second mechanism is based on the effect of the shaking off of electrons from surface states by an incident electron. It is shown that in experiments with a parallel position of the probe axis at probe-electron energies greater than 10 keV all signal parameters are determined by the shaking off effect. At probe-electron energies less than 10 keV, the signal parameters are characterized by the ionization mechanism of secondary electron generation. At an inclined position of the probe, it is possible to determine the contributions of each mechanism to the formation of secondary electrons. It is shown that the shaking off effect can contribute to the generation of secondary electrons more than the ionization mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

REFERENCES

  1. L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (Springer, Berlin, 1998).

    Book  Google Scholar 

  2. Practical Scanning Electron Microscopy: Electron and Ion Microprobe Analysis, Ed. by J. I. Goldstain and H. Yakowitz (Plenum, New York, 1975).

    Google Scholar 

  3. J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists (Plenum Press, New York, 1981).

    Book  Google Scholar 

  4. Scanning Microscopy for Nanotechnology. Techniques and Applications, Ed. by W. Zhou and Z. L. Wang (Springer, New York, 2006).

    Google Scholar 

  5. Yu. A. Novikov and A. V. Rakov, Russ. Microelectron. 25, 368 (1996).

    Google Scholar 

  6. Yu. A. Novikov and A. V. Rakov, Meas. Tech. 42, 20 (1999). https://doi.org/10.1007/BF02504195

    Article  Google Scholar 

  7. M. T. Postek and A. E. Vladar “Critical dimension metrology and the scanning electron microscope,” in Handbook of Silicon Semiconductor Metrology, Ed. by A. C. Diebold (Marcel Dekker, New York, 2001), p. 295.

    Google Scholar 

  8. V. Gavrilenko, Yu. Novikov, A. Rakov, and P. Todua, Nanoindustriya, No. 4, 36 (2009) [in Russian].

  9. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7405, 740504 (2009). https://doi.org/10.1117/12.826164

    Article  Google Scholar 

  10. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, A. M. Prokhorov, and A. V. Rakov, Russ. Microelectron. 31, 207 (2002).

    Article  CAS  Google Scholar 

  11. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 1260 (2017). https://doi.org/10.1134/S1027451017060179

    Article  CAS  Google Scholar 

  12. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 1224 (2018). https://doi.org/10.1134/S1027451018050658

    Article  CAS  Google Scholar 

  13. Yu. A. Novikov, V. P. Gavrilenko, A. V. Rakov, and P. A. Todua, Proc. SPIE 7042, 704208 (2008). https://doi.org/10.1117/12.794834

    Article  Google Scholar 

  14. Yu. A. Novikov, S. V. Peshekhonov, and I. B. Strizhkov, in Problems of Linear Measurements of Microobjects in Nanometer and Submicron Ranges, Proc. IOFAN, Vol. 49 (Nauka, Moscow, 1995), p. 20 [in Russian].

  15. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 1284 (2019). https://doi.org/10.1134/S1027451019060454

    Article  CAS  Google Scholar 

  16. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 105 (2020). https://doi.org/10.1134/S1027451020010127

    Article  CAS  Google Scholar 

  17. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 14, 965 (2020). https://doi.org/10.1134/S1027451020050134

    Article  CAS  Google Scholar 

  18. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 16, in press (2022).

  19. Yu. A. Novikov, A. M. Prokhorov, and A. V. Rakov, Phys. Chem. Mech. Surf. 9, 325 (1995).

  20. Yu. A. Novikov, A. V. Rakov, I. B. Strizhkov, and V. V. Tsybulskii, Phys. Chem. Mech. Surf. 9, 779 (1995).

  21. Yu. A. Novikov, A. V. Rakov, I. Yu. Stekolin, I. B. Strizhkov, and V. V. Tsybulsky, Bull. Russ. Acad. Sci.: Phys. 57, 1367 (1993).

    Google Scholar 

  22. Yu. A. Novikov and A. V. Rakov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled. 15, 1177 (2000).

    Google Scholar 

  23. Yu. A. Novikov and A. V. Rakov, in Mechanisms of Secondary Electron Emission from a Relief Surface of Solids, Proc. IOFAN, Vol. 55 (Nauka, Moscow, 1998), p. 3 [in Russian].

  24. Yu.A. Novikov, A.V. Rakov, I.Yu. Stekolin, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled. 13, 1119 (1998).

    Google Scholar 

  25. Yu. A. Novikov, A. V. Rakov, S. V. Sedov, I. Yu. Stekolin, and I. B. Strizhkov, Phys. Chem. Mech. Surf. 10, 1340 (1995).

  26. I. M. Bronshtein and B. S. Fraiman, Secondary Electron Emission (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  27. D. Neilson, R. M. Nieminen, and J. Szymanski, Phys. Rev. B 33, 1567 (1986).

    Article  CAS  Google Scholar 

  28. Methods of Surface Analysis, Ed. by A. W. Czanderna (Elsevier, Amsterdam, 1975). https://doi.org/10.1002/CITE.330480539

  29. L. D. Landau and E. M. Lifshits, Quantum Mechanics: Nonrelativistic Theory (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  30. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. I. Plotnikov, A. V. Rakov, and P. A. Todua, in Linear Measurements in Micrometer and Nanometer Ranges for Microelectronics and Nanotechnology, Proc. IOFAN, Vol. 62 (Nauka, Moscow, 2006), p. 77 [in Russian].

  31. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7042, 70420C (2008). https://doi.org/10.1117/12.794891

    Article  CAS  Google Scholar 

  32. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 13, 727 (2019). https://doi.org/10.1134/S102745101904030X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Novikov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, Y.A. Test Objects with a Rectangular Profile for SEM. 5. Mechanisms of SEM Signal Formation. J. Surf. Investig. 16, 806–819 (2022). https://doi.org/10.1134/S1027451022050147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022050147

Keywords:

Navigation