Skip to main content
Log in

Study of Secondary-Ion Emission during the Interaction of Zr2Fe Getter Alloy with Oxygen

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Changes in the composition of chemical compounds on the surface of a polycrystalline Zr2Fe alloy sample upon its interaction with oxygen, as well as the effect of oxygen on the processes of alloy interaction with hydrogen are studied using the secondary ion mass spectrometry technique. The interaction of oxygen with the alloy sample is shown to cause the formation of a complex oxide structure containing zirconium, iron, and oxygen on the surface and in the surface region. The ratio of the number of oxygen atoms to that of metal atoms in the oxides increased with increasing oxygen partial pressure. When the alloy is exposed to a hydrogen-oxygen gas mixture, a chemical structure that includes oxides, hydrides and hydroxides of alloy components is formed on the surface. The amount and composition of the compounds formed depend on the ratio of the hydrogen and oxygen fractions in the gas mixture, although the formation of oxides prevails over the formation of hydrides. Hydrides of the alloy components, mainly zirconium hydrides, are formed on surface sites that are free from oxides and hydroxides. At a fixed value of the oxygen partial pressure, an increase in the hydrogen partial pressure results in an increase in the amount of hydrides at such free sites. The effect of oxygen on the hydrogen sorption kinetics by the Zr2Fe alloy consists in a decrease in the hydrogen-adsorption efficiency, due to the formation of oxides on the getter surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. Sandrock, J. Alloys Compd. 293–295, 877 (1999). https://doi.org/10.1016/s0925-8388(99)00384-9

    Article  Google Scholar 

  2. V. M. Azhazha, P. N. V’yugov, I. E. Kopanets, et al., Vopr. At. Nauki Tekh., Ser.: Vak., Chist. Mater., Sverkhprovodn., No. 1(15), 41 (2006). https://doi.org/dspace.nbuv.gov.ua/handle/123456789/81321

  3. R. V. Azhazha, S. S. Krivulya, and A. P. Svinarenko, Vopr. At. Nauki Tekh., No. 5, 19 (2000). http://dspace.nbuv.gov.ua/handle/123456789/78224.

  4. P. Dantzer, Mater. Sci. Eng., A 329–331, 313 (2002). https://doi.org/10.1016/s0921-5093(01)01590-8

    Article  Google Scholar 

  5. B. P. Tarasov, V. V. Burnasheva, M. V. Lototskii, and V. A. Yartys’, Al’tern. Energ. Ekol., No. 12(32), 14 (2005).

  6. P. Dantzer, in Hydrogen in Metals III. Properties and Applications, Ed. by H. Wipf, (Springer, Berlin, 1997), p. 279. https://doi.org/10.1007/bfb0103405

  7. B. A. Kolachev, A. A. Shalin, and A. A. Il’in, Hydrogen Storage Alloys: Reference Book (Metallurgiya, Moscow, 1995).

    Google Scholar 

  8. S. Fukada, Y. Toyoshima, and M. Nishikawa, Fusion Eng. Des. 49–50, 805 (2000). https://doi.org/10.1016/s0920-3796(00)00192-7

    Article  Google Scholar 

  9. K. J. Maynard, N. P. Kherani, and W. T. Shmayda, Fusion Technol. 28, 1546 (1995). https://doi.org/10.13182/fst95-a30632

    Article  CAS  Google Scholar 

  10. W. T. Shmayda, N. P. Kherani, and A. G. Heics, J. Vac. Sci. Technol., A 6, 1259 (1988). https://doi.org/10.1116/1.575685

    Article  CAS  Google Scholar 

  11. G. R. Longhurst, R. A. Jalbert, and R. L. Rossmassler, Fusion Technol. 15, 1331 (1989). https://doi.org/10.13182/fst89-a39873

    Article  Google Scholar 

  12. S. Zalkind, M. Nahmani, and N. Shamir, J. Alloys Compd. 501, 221 (2010). https://doi.org/10.1016/j.jallcom.2010.01.165

    Article  CAS  Google Scholar 

  13. J. D. Baker, D. H. Meikrantz, R. J. Pawelko, R. A. Anderl, and D. G. Tuggle, J. Vac. Sci. Technol., A 12, 548 (1994). https://doi.org/10.1116/1.579167

    Article  CAS  Google Scholar 

  14. D. P. Broom, Hydrogen Storage Materials: The Characterisation of Their Storage Properties (Springer, London, 2011). https://doi.org/10.1007/978-0-85729-221-6

  15. G. D. Sandrock and P. D. Goodell, J. Less Common Met. 104, 159 (1984). https://doi.org/10.1016/0022-5088(84)90452-1

    Article  CAS  Google Scholar 

  16. P. Selvam, B. Viswanathan, C. S. Swamy, and V. Srinivasan, Int. J. Hydrogen Energy 16, 23 (1991). https://doi.org/10.1016/0360-3199(91)90057-P

    Article  CAS  Google Scholar 

  17. Ya. M. Fogel’, Sov. Phys. Usp. 10, 17 (1967). https://doi.org/10.1070/PU1967v010n01ABEH003196

    Article  Google Scholar 

  18. V. A. Litvinov, V. T. Koppe, and V. V. Bobkov, Bull. Russ. Acad. Sci.: Phys. 76, 553 (2012). https://doi.org/10.3103/S1062873812050152

    Article  CAS  Google Scholar 

  19. V. A. Litvinov, I. I. Okseniuk, D. I. Shevchenko, V. T. Koppe, V. V. Bobkov, and V. M. Chornous, Ukr. J. Phys. 62 (3), 195 (2017). https://doi.org/10.15407/ujpe62.03.0195

    Article  Google Scholar 

  20. V. A. Litvinov, I. I. Okseniuk, D. I. Shevchenko, and V. V. Bobkov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 576 (2018). https://doi.org/10.1134/S1027451018030321

    Article  CAS  Google Scholar 

  21. U. D. Veryatin, V. P. Mashirev, N. G. Ryabtsev, et al., Thermodynamic Properties of Inorganic Substances: Reference Book, Ed. by A. P. Zefirov (Atomizdat, Moscow, 1965) [in Russian].

    Google Scholar 

  22. A. G. Koval, V. V. Bobkov, and Yu. A. Klimovski, Nucl. Instrum. Methods, No. 132, 473 (1976).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Litvinov.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinov, V.A., Okseniuk, I.I., Shevchenko, D.I. et al. Study of Secondary-Ion Emission during the Interaction of Zr2Fe Getter Alloy with Oxygen. J. Surf. Investig. 16, 789–796 (2022). https://doi.org/10.1134/S102745102205010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102205010X

Keywords:

Navigation