Skip to main content
Log in

Measurement of the Crystallinity Index of High-Purity Quartz at Various Stages of Separation and Study of Its Structure by X-Ray Diffraction and Electron Backscatter Diffraction

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The structure of high-purity natural quartz (superquartzite) is investigated by the methods of X-ray diffraction and electron backscatter diffraction. The change in the crystallinity index obtained by the method of Murata and Norman and the impurity chemical composition of superquartzite at various technological stages of separation (thermal crushing, sieving, chemical etching, high-temperature calcination) is established. Quartz purification by etching with a mixture of hydrochloric and hydrofluoric acids is found to increase the crystallinity index at all stages, except for preliminary thermal crushing and high-temperature calcination (at 1300 or 1400°C). The maximum value of the quartz crystallinity index is reached at the first stage of chemical etching. The greatest purification from impurities also occurred at the first stage of chemical etching. Electron backscatter diffraction reveals areas of increased local misorientation of crystallites, which are concentrated at the grain boundaries, “low-angle” boundaries (with a misorientation angle of less than 7°) and areas with an increased content of fluid inclusions, which can be observed in an optical microscope. An “orientation map” and map of local crystallite misorientation regions are constructed and analyzed using the MTEX software toolkit for MATLAB. It is determined that macrodefects of a dislocation nature cause a change in the crystallinity index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. P. Aparicio and E. Galan, Clays Clay Miner. 47, 12 (1999). https://doi.org/10.1346/CCMN.1999.0470102

    Article  CAS  Google Scholar 

  2. S. Guggenheim, D. C. Bain, F. Bergaya, et al., Clays Clay Miner. 50, 406 (2002). https://doi.org/10.1346/000986002760833783

    Article  CAS  Google Scholar 

  3. S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, Biotechnol. Biofuels 3, 1 (2010). https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  Google Scholar 

  4. K. J. Murata and M. B. Norman, Am. J. Sci. 276, 1120 (1976). https://doi.org/10.2475/ajs.276.9.1120

    Article  CAS  Google Scholar 

  5. R. V. Sadovnichii, A. A. Mikhailina, N. N. Rozhkova, and I. S. Inina, Tr. Karel’sk. Nauchn. Tsentra Ross. Akad. Nauk, No. 2, 73 (2016). https://doi.org/10.17076/geo126

  6. N. Marinoni and M. A. Broekmans, Cem. Concr. Res. 54, 215 (2013). https://doi.org/10.1016/j.cemconres.2013.08.007

    Article  CAS  Google Scholar 

  7. A. S. A. A. Abu Sharib and M. R. Abukhadra, Silicon 13, 653 (2021). https://doi.org/10.1007/s12633-020-00458-6

    Article  CAS  Google Scholar 

  8. A. V. Peskov, E. V. Alekina, and E. Yu. Tarasova, Usp. Sovrem. Estestvozn., No. 11, 95 (2020). https://doi.org/10.17513/use.37521

  9. H. Takagi, K. Takahashi, K. Shimada, K. Tsutsui, R. Miura, N. Kato, and S. Takizawa, J. Struct. Geol. 35, 64 (2012). https://doi.org/10.1016/j.jsg.2011.11.008

    Article  Google Scholar 

  10. A. P. Zhaboedov, M. D. Zimin, A. I. Nepomnyashchikh, and A. N. Sapozhnikov, Obogashch. Rud, No. 1, 36 (2020). https://doi.org/10.17580/or.2020.01.07

  11. K. Nagashima, R. Tada, A. Tani, S. Toyoda, Y. Sun, and Y. Isozaki, Geochem. Geophys. Geosyst. 8 (2) (2007). https://doi.org/10.1029/2006GC001364

  12. N. Meftah and M. S. Mahboub, Silicon 12, 147 (2020). https://doi.org/10.1007/s12633-019-00109-5

    Article  CAS  Google Scholar 

  13. A. M. Fedorov, V. A. Makrygina, A. I. Nepomnyashchikh, and I. A. Eliseev, Geogr. Prir. Resur., No. 6, 55 (2016). https://doi.org/10.21782/GIPR0206-1619-2016-6(55-59)

  14. R. Haus, S. Prinz, and C. Priess, in Quartz: Deposits, Mineralogy and Analytics (Springer, Berlin, 2012), p. 29. https://doi.org/10.1007/978-3-642-22161-3_2

  15. A. I. Nepomnyashchikh, M. G. Volkova, A. P. Zhaboedov, et al., Glass Phys. Chem. 44, 130 (2018). https://doi.org/10.1134/S1087659618020128

    Article  CAS  Google Scholar 

  16. F. Bachmann, R. Hielscher, and H. Schaeben, Solid State Phenom. 160, 63 (2010). https://doi.org/10.4028/www.scientific.net/SSP.160.63

    Article  CAS  Google Scholar 

  17. L. Pagliari, M. Dapiaggi, A. Pavese, and F. Francescon, J. Eur. Ceram. Soc. 33, 3403 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.06.014

    Article  CAS  Google Scholar 

  18. A. M. Fedorov, V. A. Makrygina, A. E. Budyak, and A. I. Nepomnyashchikh, Dokl. Earth Sci. 442, 120 (2012). https://doi.org/10.1134/S1028334X12010126

    Article  CAS  Google Scholar 

  19. M. Domanski and J. A. Webb, J. Archaeolog. Sci. 19, 601 (1992). https://doi.org/10.1016/0305-4403(92)90031-W

    Article  Google Scholar 

  20. M. G. Volkova, A. I. Nepomnyashchikh, A. M. Fedorov, A. M. Makhlyanova, and N. V. Bryanskii, Geol. Geofiz. 58, 1324 (2017). https://doi.org/10.15372/GiG20170905

    Article  Google Scholar 

  21. C. Rößler, B. Möser, C. Giebson, and H. M. Ludwig, Cem. Concr. Res. 95, 47 (2017). https://doi.org/10.1016/j.cemconres.2017.02.015

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the framework of state task (project no. 0284-2021-0004 “Materials and technologies for the development of radiation detectors, phosphors, and optical glasses”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Zimin.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimin, M.D., Zhaboedov, A.P., Kolesnikov, S.S. et al. Measurement of the Crystallinity Index of High-Purity Quartz at Various Stages of Separation and Study of Its Structure by X-Ray Diffraction and Electron Backscatter Diffraction. J. Surf. Investig. 16, 484–489 (2022). https://doi.org/10.1134/S102745102204019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102204019X

Keywords:

Navigation