Skip to main content
Log in

Macrofilling of the Magnetoexciton Level in the Quantum-Hall-Effect Regime

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The formation of long-lived spin magnetoexcitons is found in strongly interacting two-dimensional electronic systems. Measurements are carried out using the method of resonant inelastic light scattering on ZnO/MgZnO samples in the quantum-Hall-effect regime. Macrofilling of the long-lived excitation level is detected on the base of the giant anti-Stokes component of inelastic light scattering at a spin exciton under conditions of a ferromagnetic phase transition at a filling factor of 2. At a temperature of about 0.35 K, the intensity of this spectral line is more than 11 orders of magnitude higher than the intensity expected due to the thermal activation of spin excitons. The conclusion about the existence of long-lived excitations is made based on analysis of the anti-Stokes scattering data obtained at different pump powers and temperatures of the system. The formation of long-lived excitations is presumably the consequence of a modification in the spin-exciton dispersion law under phase-transition conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982). https://doi.org/10.1103/PhysRevLett.48.1559

    Article  CAS  Google Scholar 

  2. H. L. Stormer, A. M. Chang, D. C. Tsui, J. C. M. Hwang, A. C. Gossard, and W. Weigman, Phys. Rev. Lett. 50, 1953 (1983). https://doi.org/10.1103/PhysRevLett.50.1953

    Article  CAS  Google Scholar 

  3. A. M. Chang, P. Berglund, D. C. Tsui, H. L. Stormer, and J. C. M. Hwang, Phys. Rev. Lett. 53, 997 (1984). https://doi.org/10.1103/PhysRevLett.53.997

    Article  CAS  Google Scholar 

  4. E. C. Stoner, Rep. Prog. Phys. 11, 43 (1947). https://doi.org/10.1088/0034-4885/11/1/304

    Article  Google Scholar 

  5. E. Wigner, Phys. Rev. 46, 1002 (1934). https://doi.org/10.1103/PhysRev.46.1002

    Article  CAS  Google Scholar 

  6. L. V. Kulik, A. V. Gorbunov, A. S. Zhuravlev, V. B. Timofeev, S. Dickmann, and I. V. Kukushkin, Sci. Rep. 4, 10354 (2015). https://doi.org/10.1038/srep10354

    Article  CAS  Google Scholar 

  7. L. V. Kulik, A. S. Zhuravlev, S. Dickmann, A. V. Gorbunov, V. B. Timofeev, I. V. Kukushkin, and S. Schmult, Nat. Commun. 7, 13499 (2016). https://doi.org/10.1038/ncomms13499

    Article  CAS  Google Scholar 

  8. Y. Kozuka, A. Tsukazaki, and M. Kawasaki, Appl. Phys. Lett. 1, 011303 (2014). https://doi.org/10.1063/1.4853535

    Article  CAS  Google Scholar 

  9. J. Falson, Y. Kozuka, M. Uchida, J. H. Smet, T. Arima, A. Tsukazaki, and M. Kawasaki, Sci. Rep. 6, 26598 (2016). https://doi.org/10.1038/srep26598

    Article  CAS  Google Scholar 

  10. A. Tsukazaki, A. Ohtomo, M. Kawasaki, et al., Phys. Rev. B 78, 233308 (2008). https://doi.org/10.1103/PhysRevB.78.233308

    Article  CAS  Google Scholar 

  11. Y. Kozuka, A. Tsukazaki, D. Maryenko, et al., Phys. Rev. B 85, 075302 (2012). https://doi.org/10.1103/PhysRevB.85.075302

    Article  CAS  Google Scholar 

  12. D. Maryenko, J. Falson, Y. Kozuka, A. Tsukazaki, and M. Kawasaki, Phys. Rev. B 90, 245303 (2014). https://doi.org/10.1103/PhysRevB.90.245303

    Article  CAS  Google Scholar 

  13. A. B. Van’kov, B. D. Kaysin, and I. V. Kukushkin, Phys. Rev. B 98, 121412 (2018). https://doi.org/10.1103/PhysRevB.98.121412

    Article  Google Scholar 

  14. S. Dickmann and B. D. Kaysin, Phys. Rev. B 101, 235317 (2020). https://doi.org/10.1103/PhysRevB.101.235317

    Article  CAS  Google Scholar 

  15. A. B. Vankov, B. D. Kaysin, and I. V. Kukushkin, Phys. Rev. B 96, 235401 (2017). https://doi.org/10.1103/PhysRevB.96.235401

    Article  Google Scholar 

  16. A. B. Van’kov, B. D. Kaisin, I. V. Kukushkin, JETP Lett. 110, 296 (2019). https://doi.org/10.1134/S0021364019160094

    Article  Google Scholar 

  17. C. Kallin and B. I. Halperin, Phys. Rev. B 30, 5655 (1984). https://doi.org/10.1103/PhysRevB.30.5655

    Article  Google Scholar 

  18. M. Dobers, K. von Klitzing, and G. Weimann, Phys. Rev. B 38, 5453 (1988). https://doi.org/10.1103/PhysRevB.38.5453

    Article  CAS  Google Scholar 

  19. L. V. Kulik and V. E. Kirpichev, Phys.–Usp. 49, 353 (2006). https://doi.org/10.1070/PU2006v049n04ABEH005885

    Article  CAS  Google Scholar 

  20. S. Dickmann, Phys. Rev. Lett. 110, 166801 (2013). https://doi.org/10.1103/PhysRevLett.110.166801

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-32-90203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Kaysin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaysin, B.D. Macrofilling of the Magnetoexciton Level in the Quantum-Hall-Effect Regime. J. Surf. Investig. 16, 457–461 (2022). https://doi.org/10.1134/S1027451022040085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022040085

Keywords:

Navigation