Skip to main content
Log in

Effect of the Pulse Phase Shift of an External Magnetic Field Upon Coating Deposition by Electrical Explosion

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

We consider the features of the deposition of a copper coating on a nickel substrate by the method of the electrical explosion of a foil in an external pulsed magnetic field. Investigations of the effect of the phase shift of the external magnetic-field pulse with respect to the moment of explosion on the morphology of the resulting coating are carried out. Deposition is carried out on the modernized experimental unit “INGIR-Mega-15” for five different conditions: the explosion occurred 100 μs before application of the magnetic-field pulse; it happened simultaneously with application of the magnetic-field pulse; at the middle of the leading edge of the pulse, at the maximum of the pulse, and at the middle of the rear edge of the pulse. The effect of the magnetic-field-pulse phase shift relative to the moment of explosion on the rate of the formation and decay of the plasma cloud is established. It is shown that the application of a magnetic field at the moment corresponding to the phase of the vapor-gas condensate promotes a more uniform distribution of copper drops over the wafer and a change in their shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. S. Sedoi and Yu. F. Ivanov, Nanotechnology 19, 145710 (2008). https://doi.org./10.1088/0957–4484/19/14/145710

    Article  CAS  Google Scholar 

  2. Yu. A. Kotov, Fiz. Khim. Obrab. Mater., No. 4, 24 (1978).

  3. V. A. Burtsev, Electric Explosion of conductors and its application in electrophysical installations (Energoatomizdat, Moscow, 1990).

    Google Scholar 

  4. V. N. Gavrilov and E. A. Litvinov, Pis’ma Zh. Tekh. Fiz., No. 2, 18 (1993).

  5. A. N. Grigoriev, E. I. Karnaukhov, A. V. Pavlenko, and V. S. Sedoi, J. Appl. Mech. Tech. Phys. 56, 136 (2015). https://doi.org./10.1134/S0021894415010204

    Article  CAS  Google Scholar 

  6. T. A. Shelkovenko, S. A. Pikuz, I. N. Tilikin, A. R. Mingaleev, V. M. Romanova, and D. A. Hammer, J. Appl. Phys. 128, 205902 (2020). https://doi.org./10.1063/5.0019330

    Article  CAS  Google Scholar 

  7. T. A. Shelkovenko, S. A. Pikuz, I. N. Tilikin, A. R. Mingaleev, L. Atoyan, and D. A. Hammer, Plasma Phys. Rep. 44, 236 (2018). https://doi.org./10.1134/S1063780X18020113

    Article  CAS  Google Scholar 

  8. G. P. Gololobov, A. N. Vlasov, M. V. Dubkov, M. A. Burobin, D. V. Suvorov, E. V. Slivkin, and A. S. Aref’ev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 540 (2018). https://doi.org/10.1134/S102745101803028X

    Article  CAS  Google Scholar 

  9. Yu. E. Adam’yan, V. M. Vasilevskii, S. N. Kolgatin, and G. A. Shneerson, Tech. Phys. 44, 588 (1999).

    Article  Google Scholar 

  10. Yu. E. Adam’yan, V. M. Vasilevskii, S. I. Krivosheev, S. N. Kolgatin, G. A. Shneerson, and V. L. Shutov, Pis’ma Zh. Tekh. Fiz., 21 (23), 43 (1995).

    Google Scholar 

  11. A. N. Vlasov, Yu. V. Cherkasova, and M. A. Burobin, Vestn. Ryazan. Gos. Radiotekh. Univ., No. 60, 154 (2017). https://doi.org/10.21667/1995-4565-2017-60-2-154-162

  12. Yu. L. Krasulin, Yu. P. Petrov, and N. V. Grevtsev, Elektron. Tekh. Mikroelektron., No. 4, 6 (1968).

  13. N. B. Volkov, A. E. Mayer, V. S. Sedoi, E. L. Fen’ko, and A. P. Yalovets, Tech. Phys. 55, 509 (2010).

    Article  CAS  Google Scholar 

  14. Yu. E. Adamian, S. N. Kolgatin, G. A. Shneerson, I. V. Glazyrin, O. V. Diyankov, S. V. Koshelev, and A. N. Slesareva, Pulsed Power Plasma Sci. 1, 81 (2001). https://doi.org./10.1109/PPPS.2001.01001999

  15. K. Wang, Z. Shi, Y. Shi, and Z. Zhao, AIP Adv. 7, 095002 (2017). https://doi.org./10.1063/1.4998298

    Article  Google Scholar 

  16. M. I. Lerner, A. V. Pervikov, E. A. Glazkova, N. V. Svarovskaya, A. S. Lozhkomoev, and S. G. Psakhie, Powder Technol. 288, 371 (2016). https://doi.org./10.1016/j.powtec.2015.11.037

    Article  CAS  Google Scholar 

  17. S. M. Karabanov, N. A. Verlov, D. V. Suvorov, G. P. Gololobov, and E. V. Slivkin, Tech. Phys. Lett. 41, 691 (2015).

    Article  CAS  Google Scholar 

  18. A. S. Aref’ev, G. P. Gololobov, V. R. Tregulov, I. G. Utochkin, and O. V. Kireeva, Vestn. Ryazan. Gos. Radiotekh. Univ., No. 12, 66 (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. P. Gololobov or E. V. Slivkin.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gololobov, G.P., Vlasov, A.N., Dubkov, M.V. et al. Effect of the Pulse Phase Shift of an External Magnetic Field Upon Coating Deposition by Electrical Explosion. J. Surf. Investig. 16, 453–456 (2022). https://doi.org/10.1134/S102745102204005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102204005X

Keywords:

Navigation