Skip to main content
Log in

Investigation of Changes in the Chemical Composition and Local Atomic Structure of Ti2AlC after Heat Treatment

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The chemical compositions and local atomic structures of powders consisting of the MAX phase of the Ti2AlC composition, which are obtained by mechanical activation in a ball mill followed by annealing, are analyzed by X-ray photoelectron, Auger, energy dispersive X-ray, extended electron energy-loss fine structure (EXELFS) spectroscopic techniques and scanning electron microscopy. The effect of precursors on the chemical composition and local atomic structure of the Ti2AlC powder is studied. The evolution of the local atomic structure of titanium and carbon as a result of mechanical activation and heat treatment is investigated. The chemical-bond lengths and the respective coordination numbers are determined from the experimental electron energy-loss spectra. A decrease in the partial interatomic C–C and C–Ti distances is shown to be caused by annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Sarycheva, A. Polemi, Y. Liu, et al., Sci. Adv. 4, aau0920 (2018). https://doi.org/10.1126/sciadv.aau0920

    Article  CAS  Google Scholar 

  2. K. Hantanasirisakul and Y. Gogotsi, Adv. Mater. 30, 1804779 (2018). https://doi.org/10.1002/adma.201804779

    Article  CAS  Google Scholar 

  3. L. Verger, V. Natu, M. Carey, and M. W. Barsoum, Trends Chem. 1, 656 (2019). https://doi.org/10.1016/j.trechm.2019.04.006

    Article  CAS  Google Scholar 

  4. M. Khazaei, A. Ranjbar, M. Arai, et al., J. Mater. Chem. C 5, 2488 (2017). https://doi.org/10.1039/C7TC00140A

    Article  CAS  Google Scholar 

  5. J. Zhu, E. Ha, G. Zhao, et al., Coord. Chem. Rev. 352, 306 (2017). https://doi.org/10.1016/j.ccr.2017.09.012

    Article  CAS  Google Scholar 

  6. F. Kong, X. He, Q. Liu, et al., Ceram. Int. 44, 11591 (2018). https://doi.org/10.1016/j.ceramint.2018.03.223

    Article  CAS  Google Scholar 

  7. M. Alhabeb, K. Maleski, B. Anasori, et al., Chem. Mater. 29, 7633 (2017). https://doi.org/10.1021/acs.chemmater.7b02847

    Article  CAS  Google Scholar 

  8. M. Benchakar, L. Loupias, C. Garnero, et al., Appl. Surf. Sci. 530, 147209 (2020). https://doi.org/10.1016/j.apsusc.2020.147209

    Article  CAS  Google Scholar 

  9. P. Bärmann, R. Nölle, V. Siozios, et al., ACS Nano 15, 3295 (2021). https://doi.org/10.1021/acsnano.0c10153

    Article  CAS  Google Scholar 

  10. T. S. Mathis, K. Maleski, A. Goad, et al., ACS Nano 15, 6420 (2021). https://doi.org/10.1021/acsnano.0c08357

    Article  CAS  Google Scholar 

  11. X. Zhao, D. E. Holta, Z. Tan, et al., ACS Appl. Nano Mater. 3, 10578 (2020). https://doi.org/10.1021/acsanm.0c02473

    Article  CAS  Google Scholar 

  12. C. E. Shuck, M. Han, K. Maleski, et al., ACS Appl. Nano Mater. 2, 3368 (2019). https://doi.org/10.1021/acsanm.9b00286

    Article  CAS  Google Scholar 

  13. F. Kong, X. He, Q. Liu, et al., Ceram. Int. 44, 11591 (2018). https://doi.org/10.1016/j.ceramint.2018.03.223

    Article  CAS  Google Scholar 

  14. X. H. Wang and Y. C. Zhou, J. Mater. Sci. Technol. 26, 385 (2010). https://doi.org/10.1016/s1005-0302(10)60064-3

    Article  Google Scholar 

  15. M. A. Eryomina, S. F. Lomayeva, V. V. Tarasov, et al., Met. Mater. Int. 27, 1808 (2021). https://doi.org/10.1007/s12540-019-00531-9

    Article  CAS  Google Scholar 

  16. M. de Crescenzi, Crit. Rev. Solid State Mater. Sci. 15, 279 (1989). https://doi.org/10.1080/10408438908243447

    Article  CAS  Google Scholar 

  17. Yu. V. Ruts, D. E. Guy, D. V. Surnin, and V. I. Grebennikov, Exp. Methods Phys. Sci. 38, 191 (2001). https://doi.org/10.1016/S1079-4042(01)80050-3

    Article  CAS  Google Scholar 

  18. O. R. Bakieva, O. M. Nemtsova, D. V. Surnin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9, 1039 (2015). https://doi.org/10.1134/S1027451015030180

    Article  CAS  Google Scholar 

  19. M. Sokol, V. Natu, S. Kota, and M. W. Barsoum, Trends Chem. 1, 210 (2019). https://doi.org/10.1016/j.trechm.2019.02.016

    Article  CAS  Google Scholar 

  20. M. Naguib, V. N. Mochalin, M. W. Barsoum, and Y. Gogotsi, Adv. Mater. 26, 992 (2013). https://doi.org/10.1002/adma.201304138

    Article  CAS  Google Scholar 

  21. J. Halim, K. M. Cook, M. Naguib, et al., Appl. Surf. Sci. 362, 406 (2016). https://doi.org/10.1016/j.apsusc.2015.11.089

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

All investigations were carried out using facilities of shared research center “Surface and novel materials” Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences.

Funding

This work is supported by Russian Federation Assignment (project no. 121030100001-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Averkiev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averkiev, I.K., Bakieva, O.R. Investigation of Changes in the Chemical Composition and Local Atomic Structure of Ti2AlC after Heat Treatment. J. Surf. Investig. 16, 734–741 (2022). https://doi.org/10.1134/S1027451022030041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030041

Keywords:

Navigation