Skip to main content
Log in

On AFM Measurements of the Interaction Force Vector by Means of Interferometry, Optical Lever, and the Piezoresistive Method

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

In atomic force microscopy, the interaction of a probe with a sample is usually controlled by the angle of cantilever bending at a selected point on it using an optical lever. Such control is not designed to record all three components of the interaction-force vector. It is possible to reveal these components and the result of the force action, i.e., the displacement vector of the “nondeformable” probe of an “ideal” cantilever, by additional measurements of the deformation (by the piezoresistive method) or the amount of bending (by the interferometry method) at a selected point, or the bending angle at one more point on the cantilever. In this paper, we present the results of analytical calculation of the optimal location of these points on a cantilever for six combinations of the above three methods, which reduces the measurement error of the components of the force and displacement vectors to a minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986). https://doi.org/10.1103/PhysRevLett.56.930

    Article  CAS  Google Scholar 

  2. Mironov, V.L., Fundamentals of Scanning Probe Microscopy (Tekhnosfera, Moscow, 2005) [in Russian].

    Google Scholar 

  3. A. Bolopion, H. Xie, D. S. Haliyo, and S. Regnier, IEEE/ASME Trans. Mechatron. 17, 116 (2012). https://doi.org/10.1109/TMECH.2010.2090892

    Article  Google Scholar 

  4. I. A. Nyapshaev, A. V. Ankudinov, A. V. Stovpyaga, E. Yu. Trofimova, and M. Yu. Eropkin, Tech. Phys. 57, 1430 (2012).

    Article  CAS  Google Scholar 

  5. G. Dai, K. Hahm, F. Scholze, M.-A. Henn, H. Gross, J. Fluegge, and H. Bosse, Meas. Sci. Technol. 25, 044002 (2014). https://doi.org/10.1088/0957-0233/25/4/044002

    Article  CAS  Google Scholar 

  6. E. Soergel, J. Phys. D: Appl. Phys. 44, 464003 (2011). https://doi.org/10.1088/0022-3727/44/46/464003

    Article  CAS  Google Scholar 

  7. D. O. Alikin, L. V. Gimadeeva, A. V. Ankudinov, Q. Hu, V. Ya. Shur, and A. L. Kholkin, Appl. Surf. Sci. 543, 148808 (2021). https://doi.org/10.1016/j.apsusc.2020.148808

    Article  CAS  Google Scholar 

  8. A. Kis, PhD Thesis (Ecole Politech. Fed. Lausanne, Lausanne, 2003).

  9. A. V. Ankudinov, Semiconductors 53, 1891 (2019). https://doi.org/10.1134/S1063782619140021

    Article  CAS  Google Scholar 

  10. M. M. Khalisov, V. A. Lebedev, A. S. Poluboyarinov, A. V. Garshev, E. K. Khrapova, A. A. Krasilin, and A. V. Ankudinov, Nanosyst.: Phys., Chem., Math. 12, 118 (2021). https://doi.org/10.17586/2220-8054-2021-12-1-118-127

    Article  CAS  Google Scholar 

  11. M. Tortonose, R. C. Barrett, and C. F. Quate, Appl. Phys. Lett. 62, 834 (1993). https://doi.org/10.1063/1.108593

    Article  Google Scholar 

  12. J. Thaysen, A. Boisen, O. Hansen, and S. Bouwstra, Sens. Actuators, A 83, 47 (2000). https://doi.org/10.1016/S0924-4247(00)00299-5

    Article  CAS  Google Scholar 

  13. Nanotribology and Nanomechanics: An Introduction, Ed. by B. Bhushan (Springer, Heidelberg, 2008). https://doi.org/10.1007/978-3-540-77608-6

    Book  Google Scholar 

  14. S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, and P. K. J. Hansma, J. Appl. Phys. 65, 164 (1989). https://doi.org/10.1063/1.342563

    Article  CAS  Google Scholar 

  15. D. Rugar, H. J. Mamin, and P. Guethner, Appl. Phys. Lett. 55, 2588 (1989). https://doi.org/10.1063/1.101987

    Article  CAS  Google Scholar 

  16. R. S. M. Mrinalini, R. Sriramshankar, and G. R. Jayanth, IEEE/ASME Trans. Mechatron. 20, 2184 (2015). https://doi.org/10.1109/TMECH.2014.2366794

    Article  Google Scholar 

  17. A. V. Ankudinov and A. M. Minarskii, Tech. Phys. 67, in press (2022). https://doi.org/10.1134/S1063784221060037

  18. D. Sarid, Exploring Scanning Probe Microscopy with Mathematica (Wiley, Weinheim, 2007).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon, Oxford, 1970).

    Google Scholar 

  20. A. V. Ankudinov, Nanosyst.: Phys., Chem., Math. 10, 642 (2019). https://doi.org/10.17586/2220-8054-2019-10-6-642-653

    Article  CAS  Google Scholar 

  21. A. Labuda and R. Proksch, Appl. Phys. Lett. 106, 253103 (2015). https://doi.org/10.1063/1.4922210

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I thank A.M. Minarsky (Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg, Russian Academy of Sciences) for interest in the topic of study and to M.M. Khalisov (Pavlov Institute of Physics, Russian Academy of Sciences) for help in preparing the manuscript.

Funding

The study was in part supported by the Russian Science Foundation, grant no. 19-13-00151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ankudinov.

Ethics declarations

I declare that I have no conflict of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankudinov, A.V. On AFM Measurements of the Interaction Force Vector by Means of Interferometry, Optical Lever, and the Piezoresistive Method. J. Surf. Investig. 16, 247–253 (2022). https://doi.org/10.1134/S1027451022030028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022030028

Keywords:

Navigation