Skip to main content
Log in

Influence of High-Energy C60 Ions on the Structure and Bonds of Carbon Coatings

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The carbon films formed by accelerated C60 ion deposition are investigated by transmission electron microscopy and X-ray photoelectron spectroscopy. It is demonstrated that amorphous carbon films are formed at an ion-beam energy of 7 keV and a temperature of the substrate of 100–200°C. Substrate temperature increase to 300°C results in the formation of nanocomposite films consisting of graphite nanocrystals embedded in an amorphous carbon matrix. The presence of double- and triple-charged C60 ions with an energy of 14 and 21 keV respectively in the beam results in a decrease in the temperature of formation of the nanocomposite to 200°C. As the result of analysis of the data collected from various sample depths by X-ray photoelectron spectroscopy and Auger-electron spectroscopy, it is found that the sp3/sp2 ratio in the surface layers is higher than in the sample bulk, both in the case of a monoenergetic 7 keV beam, and in the presence of multicharged high-energy ions in the beam. If high-energy ions are present in the beam, then the sp3/sp2 ratio is higher and depends, in a complex way, on the temperature of deposition. The maximum amount of sp3 bonds in the surface layers is found at a temperature of deposition of 350°C and is equal to 88%. The water drop contact angle for this film is 96°, which is similar to the contact angle of the diamond surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Robertson, Mater. Sci. Eng. R 37, 129 (2002). https://doi.org/10.1016/S0927-796X(02)00005-0

    Article  Google Scholar 

  2. C. Donnet and A. Erdemir, Tribology of Diamond-Like Carbon Films: Fundamentals and Applications (Springer, New York, 2008).

    Book  Google Scholar 

  3. C. A. Love, R. B. Cook, T. J. Harvey, P. A. Dearnley, and R. J. K. Wood, Tribol. Int. 63, 141 (2013). https://doi.org/10.1016/j.triboint.2012.09.006

    Article  CAS  Google Scholar 

  4. W. L. Shi, Appl. Mech. Mater. 864, 14 (2017). doi 10.4028/www.scientific.net/AMM.864.14

  5. K. Bewilogua, G. Brauer, A. Dietz, J. Gabler, G. Goch, B. Karpuschewski, and B. Szyszka, CIRP Ann. 58, 608 (2009). https://doi.org/10.1016/j.cirp.2009.09.001

    Article  Google Scholar 

  6. M. R. Derakhshandeh, M. J. Eshraghi, M. Javaheri, S. Khamseh, M. G. Sari, P. Zarrintaj, and M. Mozafari, Surf. Innovations 6, 266 (2018). https://doi.org/10.1680/jsuin.18.00002

    Article  Google Scholar 

  7. R. Narayan, Diamond-Based Materials for Biomedical Applications (Elsevier, Amsterdam, 2013).

    Book  Google Scholar 

  8. J. D. Carey and S. R. Silva, Phys. Rev. B 70, 235417 (2004). https://doi.org/10.1103/PhysRevB.70.235417

    Article  CAS  Google Scholar 

  9. J. D. Carey, Thin Solid Films 515, 996 (2006). https://doi.org/10.1016/j.tsf.2006.07.078

    Article  CAS  Google Scholar 

  10. N. H. Cho, D. K. Veirs, J. W. Ager, M. D. Rubin, C. B. Hopper, and D. B. Bogy, J. Appl. Phys. 71, 2243 (1992). https://doi.org/10.1063/1.351122

    Article  CAS  Google Scholar 

  11. V. E. Pukha, E. N. Zubarev, A. N. Drozdov, A. T. Pugachov, S. H. Jeong, and S. C. Nam, J. Phys. D: Appl. Phys. 45, 335302 (2012). https://doi.org/10.1088/0022-3727/45/33/335302

    Article  CAS  Google Scholar 

  12. O. V. Penkov, V. E. Pukha, E. N. Zubarev, S. S. Yoo, and D. E. Kim, Tribol. Int. 60, 127 (2013). https://doi.org/10.1016/j.triboint.2012.11.011

    Article  CAS  Google Scholar 

  13. V. Pukha, J. Popova, M. Khadem, D.-E. Kim, I. Khodos, A. Shakhmin, M. Mishin, K. Krainov, A. Titov, and P. Karaseov, Springer Proc. Phys. 255, 131 (2021). https://doi.org/10.1007/978-3-030-58868-7_15

    Article  CAS  Google Scholar 

  14. V. E. Pukha, Mater. Res. Express 1, 035049 (2014).

    Article  CAS  Google Scholar 

  15. V. E. Pukha, J. Phys. D: Appl. Phys. 46, 485305 (2013). https://doi.org/10.1088/0022-3727/46/48/485305

    Article  CAS  Google Scholar 

  16. Y. Lifshitz, Phys. Rev. B 41, 10468 (1990). https://doi.org/10.1103/PhysRevB.41.10468

    Article  CAS  Google Scholar 

  17. V. N. Popok, Surf. Sci. Rep. 66, 347 (2011). https://doi.org/10.1016/j.surfrep.2011.05.002

    Article  CAS  Google Scholar 

  18. Z. Postawa, J. Phys. Chem. B 108, 7831 (2004). https://doi.org/10.1021/jp049936a

    Article  CAS  Google Scholar 

  19. V. E. Pukha, J. Nanosci. Nanotechnol. 7, 1370 (2007). https://doi.org/10.1166/jnn.2007.458

    Article  CAS  Google Scholar 

  20. M. V. Maleev, E. N. Zubarev, V. E. Pukha, A. N. Drozdov, and A. S. Vus, Metallofiz. Noveishie Tekhnol. 37, 777 (2015). http://dspace.nbuv.gov.ua/handle/123456789/ 112255.

  21. B. Chatterjee and S. Bhowmik, in Sustainable Engineering Products and Manufacturing Technologies (Academic, New York, 2019), p. 199. https://doi.org/10.1016/B978-0-12-816564-5.00009-8

    Book  Google Scholar 

  22. M. Kaur and K. Singh, Mater. Sci. Eng. C 102, 844 (2019). https://doi.org/10.1016/j.msec.2019.04.064

    Article  CAS  Google Scholar 

  23. E. Kaivosoja, S. Sainio, J. Lyytinen, T. Palomaki, T. Laurila, S. I. Kim, and J. Koskinen, Surf. Coat. Technol. 259, 33 (2014). https://doi.org/10.1016/j.surfcoat.2014.07.056

    Article  CAS  Google Scholar 

  24. C. H. Thompson, J. Neural Eng. 17, 021001 (2020). https://doi.org/10.1088/1741-2552/ab7030

    Article  Google Scholar 

  25. J. C. Dawson and C. J. Adkins, J. Phys.: Condens. Matter 7, 6297 (1995). https://doi.org/10.1088/0953-8984/7/31/013

    Article  CAS  Google Scholar 

  26. V. E. Pukha, A. T. Pugachov, N. P. Churakova, E. N. Zubarev, V. E. Vinogradov, and S. C. Nam, J. Nanosci. Nanotechnol. 12, 4762 (2012). https://doi.org/10.1166/jnn.2012.4925

    Article  CAS  Google Scholar 

  27. V. N. Matveev, V. T. Volkov, V. I. Levashov, and I. I. Khodos, Inorg. Mater. 54, 229 (2018). https://doi.org/10.1134/S002016851803010X

    Article  CAS  Google Scholar 

  28. X. Chen, X. Wang, and D. Fang, Fullerenes, Nanotubes, Carbon Nanostruct. 28, 1048 (2020). https://doi.org/10.1080/1536383X.2020.1794851

    Article  CAS  Google Scholar 

  29. B. Lesiak, Appl. Surf. Sci. 452, 223 (2018). https://doi.org/10.1016/j.apsusc.2018.04.269

    Article  CAS  Google Scholar 

  30. L. Y. Ostrovskaya, J. Nanosci. Nanotechnol. 9, 3665 (2009). https://doi.org/10.1166/jnn.2009.NS48

    Article  CAS  Google Scholar 

Download references

Funding

The work is supported by Russian Foundation for Basic Research (project no. 19-58-51016), and also partially in the context of the State assignments of Institute of Problems of Chemical Physics, Russian Academy of Sciences (state registration number AAAA-A19-119061890019-5, thematic card 0089-2019-007), and Institute of Problems of Microelectronics Technology, Russian Academy of Sciences (no. 075-00355-21-00) with the use of equipment of Analytic Research Equipment Sharing Center of the Institute of Problems of Chemical Physics, Russian Academy of Sciences, and Research Equipment Sharing Center of Chernogolovka Scientific Center, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Belmesov.

Ethics declarations

We declare that we have no conflict of interest.

Additional information

Translated by G. Levina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belmesov, A.A., Nechaev, G.V., Pukha, V.E. et al. Influence of High-Energy C60 Ions on the Structure and Bonds of Carbon Coatings. J. Surf. Investig. 15 (Suppl 1), S112–S119 (2021). https://doi.org/10.1134/S1027451022020240

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451022020240

Keywords:

Navigation