Skip to main content
Log in

Kinetics of Magnetization Reversal in Superconductor–Ferromagnet Heterostructures in Longitudinal and Perpendicular Magnetic Fields

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The kinetics of magnetization reversal in LSMO/YBCO hybrid nanostructures in longitudinal and perpendicular magnetic fields is investigated at temperatures above and below that of the superconducting transition. It is shown that, in a perpendicular magnetic field, the presence of the ferromagnetic layer in the structure leads only to an increase in the local pinning of vortices and inhomogeneity of the penetrating magnetic flux due to its dendritic penetration into YBCO. However, in a longitudinal field, various patterns of magnetic-flux penetration into YBCO are observed, which are determined by the magnetic prehistory, i.e., by the type of magnetic-domain structure formed in LSMO after magnetization reversal above the critical temperature of the superconductor. In particular, the longitudinal magnetic field applied to the structure is transformed either to macroscopic droplets with an alternating perpendicular magnetic flux or to extended longitudinal waves of the perpendicular flux, which decay upon propagation deep into the superconductor; i.e., in both cases, vortices and antivortices perpendicular to the superconductor film plane enter the superconductor. The results obtained are qualitatively explained by distortion of the configuration of the longitudinal magnetic field applied to the heterostructure by a ferromagnetic layer deposited under the superconducting layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. J. Hauser, Phys. Rev. Lett. 23, 374 (1969).

    Article  CAS  Google Scholar 

  2. A. I. Buzdin, B. Buyachich, and M. Yu. Kupriyanov, Zh. Eksp. Teor. Fiz. 101, 231 (1992).

    CAS  Google Scholar 

  3. V. V. Ryazanov, Phys.—Usp. 42, 825 (1999).

    Article  CAS  Google Scholar 

  4. Yu. A. Izyumov, Yu. N. Proshin, and M. G. Khusainov, Phys.—Usp. 46, 1311 (2002).

    Google Scholar 

  5. M. G. Blamire and J. W. A. Robinson, J. Phys.: Condens. Matter 26, 453201 (2014).

    CAS  Google Scholar 

  6. V. N. Kushnir, A. Sidorenko, L. R. Tagirov, and M. Y. Kupriyanov, “Basic Superconducting Spin Valves,” in Functional Nanostructures and Metamaterials for Superconducting Spintronics: From Superconducting Qubits to Self-Organized Nanostructures, Ed. by A. Sidorenko (Springer, Cham, 2018), p. 1. https://doi.org/10.1007/978-3-319-90481-8_1

  7. I. Martinez, P. Högl, C. Gonzalez-Ruano, J. P. Cascales, C. Tiusan, Y. Lu, M. Hehn, A. Matos-Abiague, Ja. Fabian, I. Žutic, and F. G. Aliev, Phys. Rev. Appl. 13, 014030 (2020).

    Article  CAS  Google Scholar 

  8. P. Fulde and R. Ferrell, Phys. Rev. 135, 550 (1964).

    Article  Google Scholar 

  9. I. Larkin and Yu. N. Ovchinikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964).

    CAS  Google Scholar 

  10. Yu. N. Proshin and M. G. Khusainov, JETP Lett. 66, 562 (1997).

    Article  Google Scholar 

  11. V. A. Vas’ko, V. A. Larkin, P. A. Kraus, K. R. Nikolaev, D. E. Grupp, C. A. Nordman, A. M. Goldman, Phys. Rev. Lett. 78, 1134 (1997).

    Article  Google Scholar 

  12. A. Cottet, Phys. Rev. B: Condens. Matter Mater. Phys. 76, 224505 (2007).

    Article  Google Scholar 

  13. S. K. Upadhyay, A. Palanisami, R. N. Louie, and R. A. Buhrman, Phys. Rev. Lett. 81, 3247 (1998).

    Article  CAS  Google Scholar 

  14. I. V. Bobkova and A. M. Bobkov, JETP Lett. 101, 407 (2015).

    Article  CAS  Google Scholar 

  15. I. V. Bobkova and A. M. Bobkov, JETP Lett. 99, 333 (2014).

    Article  Google Scholar 

  16. D. Beckmann, H. B. Weber, and H. van Löhneysen, Phys. Rev. Lett. 93, 197003 (2004).

    Article  CAS  Google Scholar 

  17. V. M. Edelstein, Phys. Rev. B 103, 094507 (2021).

    Article  CAS  Google Scholar 

  18. A. A. Golubov, M. Yu. Kupriyanov, and E. Il’ichev, Rev. Mod. Phys. 76, 411 (2004).

    Article  CAS  Google Scholar 

  19. T. T. Heikkila, M. Silaev, P. Virtanen, and F. S. Bergeret, Progress Surf. Sci. 94, 100540 (2019).

    Article  CAS  Google Scholar 

  20. F. S. Bergeret, M. Silaev, P. Virtanen, and T. T. Heikkila, Rev. Mod. Phys. 90, 041001 (2018).

    Article  CAS  Google Scholar 

  21. M. Eschrig, Rep. Prog. Phys. 78, 104501 (2015).

    Article  Google Scholar 

  22. V. V. Ryazanov, V. A. Oboznov, V. V. Bol’ginov, A. S. Prokof’ev, and A. K. Feofanov, Phys.—Usp. 47, 732 (2004).

    Article  CAS  Google Scholar 

  23. Ya. V. Fominov, A. A. Golubov, T. Yu. Karminskaya, M. Yu. Kupriyanov, R. G. Deminov, and L. R. Tagirov, JETP Lett. 91, 308 (2010).

    Article  CAS  Google Scholar 

  24. V. V. Bol’ginov, V. S. Stolyarov, D. S. Sobanin, A. L. Karpovich, and V. V. Ryazanov, JETP Lett. 95, 366 (2012).

    Article  Google Scholar 

  25. T. Nurgaliev, V. Strbik, S. Miteva, B. Blagoev, E. Mateev, L. Neshkov, S. Benacka, and S. Chromik, Cent. Eur. J. Phys. 5, 637 (2007).

    CAS  Google Scholar 

  26. V. Štrbík, B. Blagoev, E. Mateev, and T. Nurgaliev, J. Phys.: Conf. Ser. 514, 012042 (2014).

    Google Scholar 

  27. T. Nurgaliev, B. Blagoev, T. Donchev, S. Miteva, P. B. Mozhaev, J. E. Mozhaeva, G. A. Ovsyannikov, I. M. Kotelyanskii, and C. Jacobsen, J. Phys.: Conf. Ser. 43, 329 (2006).

    CAS  Google Scholar 

  28. L. S. Uspenskaya, O. A. Tikhomirov, and T. Nurgaliev, J. Appl. Phys. 109, 113901 (2011).

    Article  Google Scholar 

  29. L. Ya. Vinnikov, L. A. Gurevich, G. A. Emel’chenko, and Yu. A. Osip’yan, Pis’ma Zh. Eksp. Teor. Fiz. 47, 109 (1988).

    CAS  Google Scholar 

  30. L. Ya. Vinnikov, I. V. Grigor’eva, L. A. Gurevich, and A. E. Koshelev, Sverkhprovodimost: Fiz., Khim., Tekh. 3, 1434 (1990).

    CAS  Google Scholar 

  31. L. S. Uspenskaya and S. V. Egorov, Phys. B (Amsterdam, Neth.) 435, 160 (2014).

Download references

ACKNOWLEDGMENTS

The samples were synthesized by Prof. T. Nurgaliev’s team, Institute of Economics, Bulgarian Academy of Sciences, in the framework of the program of cooperation between the Russian and Bulgarian Academies of Sciences.

Funding

This study was carried out within the state assignment for the Institute of Solid State Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Uspenskaya.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uspenskaya, L.S. Kinetics of Magnetization Reversal in Superconductor–Ferromagnet Heterostructures in Longitudinal and Perpendicular Magnetic Fields. J. Surf. Investig. 15, 1159–1164 (2021). https://doi.org/10.1134/S1027451021060227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021060227

Keywords:

Navigation