Skip to main content
Log in

First Principal Simulation of Palladium Nanocatalysts Surfaces

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Palladium nanocatalysts are widely used in a number of industrially relevant hydrogenation reactions. Understanding the processes that occur at the surface of the catalysts during these reactions is a problem of high scientific and industrial importance. This work is devoted to the theoretical study of atomic and electronic structure of palladium (111) and (100) surfaces, and the structures of a series of hydrocarbon, which are potential intermediates of ethylene and acetylene hydrogenation/dehydrogenation reactions. It was found that in (111) surface after geometry relaxation, interplanar distances at the surface are bigger than those in the bulk, while the opposite effect is observed for (100) surface. It was shows that the above effect is reproduced in both Projector Augmented Wave method and with using Slater Type Orbitals. The effect is stronger in Generalized Gradient Approximation than in Local Density Approximation. On the obtained surfaces, 11 hydrocarbon molecules and radicals were relaxed and the probably of their formation at different surfaces was estimated. The obtained results provide important insights on the fundamental processes of hydrocarbon adsorption on palladium nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Handbook of Heterogeneous Catalysis, Ed. by H. Arnold, F. Dobert, et al. (Wiley, Weinheim, 1997).

    Google Scholar 

  2. P. Sabatier, “The Method of Direct Hydrogenation by Catalysis: Nobel Lecture, December 11, 1912,” in Nobel Lectures in Chemistry 1901–1921 (World Sci., 1999).

    Google Scholar 

  3. F. Studt, F. Abild-Pedersen, T. Bligaard, R. Z. Sorensen, C. H. Christensen, and J. K. Norskov, Angew. Chem., Int. Ed. 120, 9439 (2008). https://doi.org/10.1002/ange.200802844

    Article  Google Scholar 

  4. A. A. Skorynina, A. A. Tereshchenko, O. A. Usoltsev, A. L. Bugaev, K. A. Lomachenko, A. A. Guda, E. Groppo, R. Pellegrini, C. Lamberti, and A. V. Soldatov, Radiat. Phys. Chem. 175, 108079 (2020). https://doi.org/10.1016/j.radphyschem.2018.11.033

    Article  CAS  Google Scholar 

  5. A. L. Bugaev, O. A. Usoltsev, A. A. Guda, K. A. Lomachenko, M. Brunelli, E. Groppo, R. Pellegrini, A. V. Soldatov, and J. van Bokhoven, Faraday Discuss. 229, 197 (2021). https://doi.org/10.1039/c9fd00139e

  6. E. G. Kamyshova, A. A. Skorynina, A. L. Bugaev, C. Lamberti, and A. V. Soldatov, Radiat. Phys. Chem. 175, 108144 (2020). https://doi.org/10.1016/j.radphyschem.2019.02.003

    Article  CAS  Google Scholar 

  7. M. V. Kirichkov, A. L. Bugaev, A. A. Skorynina, V. V. Butova, A. P. Budnyk, A. A. Guda, A. L. Trigub, and A. V. Soldatov, Metals 10, 810 (2020). https://doi.org/10.3390/met10060810

    Article  CAS  Google Scholar 

  8. A. L. Bugaev, A. A. Guda, I. A. Pankin, E. Groppo, R. Pellegrini, A. Longo, A. V. Soldatov, and C. Lamberti, Catal. Today 336, 40 (2019). https://doi.org/10.1016/j.cattod.2019.02.068

    Article  CAS  Google Scholar 

  9. A. Ruban, B. Hammer, P. Stoltze, H. L. Skriver, and J. K. Norskov, J. Mol. Catal. A: Chem. 115, 421 (1997). https://doi.org/10.1016/S1381-1169(96)00348-2

    Article  CAS  Google Scholar 

  10. H. Gruber-Woelfler, P. F. Radaschitz, P. W. Feenstra, W. Haas, and J. G. Khinast, J. Catal. 286, 30 (2012). https://doi.org/10.1016/j.jcat.2011.10.013

    Article  CAS  Google Scholar 

  11. A. Sárkány, A. Horváth, and A. Beck, Appl. Catal. 229, 117 (2002). https://doi.org/10.1016/S0926-860X(02)00020-0

    Article  Google Scholar 

  12. F. Studt, F. Abild-Pedersen, T. Bligaard, R. Z. Sorensen, C. H. Christensen, and J. K. Norskov, Science 320 (5881), 1320 (2008). https://doi.org/10.1126/science.1156660

    Article  CAS  Google Scholar 

  13. F. Mittendorfer, C. Thomazeau, P. Raybaud, and H. Toulhoat, J. Phys. Chem. B 107, 12287 2003). https://doi.org/10.1021/jp035660f

    Article  CAS  Google Scholar 

  14. P. Sautet and J.-F. Paul, Catal. Lett. 9, 245 (1991).

    Article  CAS  Google Scholar 

  15. J. L. Davis and M. A. Barteau, J. Am. Chem. Soc. 111, 1782 (1989). https://doi.org/10.1021/ja00187a035

    Article  CAS  Google Scholar 

  16. I. Alkorta and J. Elguero, Int. J. Mol. Sci. 4, 64 (2003). https://doi.org/10.3390/i4030064

    Article  CAS  Google Scholar 

  17. A. D. Laurent and D. Jacquemin, Int. J. Quantum Chem. 113, 2019 (2013). https://doi.org/10.1002/qua.24438

    Article  CAS  Google Scholar 

  18. G. R. Schleder, A. C. M. Padilha, C. M. Acosta, M. Costa, and A. Fazzio, J. Phys.: Mater. 2, 032001 (2019). https://doi.org/10.1088/2515-7639/ab084b

    Article  CAS  Google Scholar 

  19. G. de Velde, F. M. Bickelhaupt, E. J. Baerends, Guerra C. Fonseca, S. J. van Gisbergen, J. G. Snijders, and T. Ziegler, J. Comput. Chem. 22, 931 (2001). https://doi.org/10.1002/jcc.1056

    Article  Google Scholar 

  20. G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  21. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  22. G. Kresse and D. Joubert, Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  23. A. L. Bugaev, M. Zabilskiy, A. A. Skorynina, O. A. Usoltsev, A. V. Soldatov, and J. A. van Bokhoven, Chem. Commun. 56, 13097 (2020). https://doi.org/10.1039/D0CC05050D

    Article  CAS  Google Scholar 

  24. A. L. Bugaev, O. A. Usoltsev, A. A. Guda, K. A. Lomachenko, I. A. Pankin, Y. V. Rusalev, H. Emerich, E. Groppo, R. Pellegrini, A. V. Soldatov, J. A. van Bokhoven, and C. Lamberti, J. Phys. Chem. C 122, 12029 (2018). https://doi.org/10.1021/acs.jpcc.7b11473

    Article  CAS  Google Scholar 

  25. O. A. Usoltsev, A. Y. Pnevskaya, E. G. Kamyshova, A. A. Tereshchenko, A. A. Skorynina, W. Zhang, T. Yao, A. L. Bugaev, and A. V. Soldatov, Nanomaterials 10, 1643 (2020). https://doi.org/10.3390/nano10091643

    Article  CAS  Google Scholar 

  26. O. A. Usoltsev, A. L. Bugaev, A. A. Guda, S. A. Guda, and A. V. Soldatov, Top. Catal. 63, 58 (2020). https://doi.org/10.1007/s11244-020-01221-2

    Article  CAS  Google Scholar 

  27. F. Studt, F. Abild-Pedersen, T. Bligaard, R. Z. Sorensen, C. H. Christensen, and J. K. Norskov, Angew. Chem., Int. Ed. Engl. 47, 9299 (2008). https://doi.org/10.1002/anie.200802844

    Article  CAS  Google Scholar 

  28. D. Teschner, Z. Revay, J. Borsodi, M. Havecker, A. Knop-Gericke, R. Schlogl, D. Milroy, S. D. Jackson, D. Torres, and P. Sautet, Angew. Chem., Int. Ed. Engl. 47, 9274 (2008). https://doi.org/10.1002/anie.200802134

    Article  CAS  Google Scholar 

  29. H. Kubicka, J. Catal. 12, 223 (1968). https://doi.org/10.1016/0021-9517(68)90102-4

    Article  CAS  Google Scholar 

  30. S. Krüger, S. Vent, F. Nortemann, M. Staufer, and N. Rosch, J. Chem. Phys. 115, 2082 (2001). https://doi.org/10.1063/1.1383985

    Article  CAS  Google Scholar 

  31. I. V. Yudanov, K. M. Neyman, and N. Rosch, Phys. Chem. Chem. Phys. 6, 116 (2004). https://doi.org/10.1039/b311054k

    Article  CAS  Google Scholar 

  32. J. Paier, R. Hirschl, M. Marsman, and G. Kresse, J. Chem. Phys. 122, 234102 (2005). https://doi.org/10.1063/1.1926272

    Article  CAS  Google Scholar 

  33. J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, and J. G. Angyan, J. Chem. Phys. 124, 154709 (2006). https://doi.org/10.1063/1.2187006

    Article  CAS  Google Scholar 

  34. J. P. Perdew, Phys. Rev. Lett. 55, 1665 (1985). https://doi.org/10.1103/PhysRevLett.55.1665

    Article  CAS  Google Scholar 

  35. R. A. Evarestov and V. P. Smirnov, Phys. Rev. B: Condens. Matter Mater. Phys. 70, 233101 (2004). https://doi.org/10.1103/PhysRevB.70.233101

    Article  CAS  Google Scholar 

  36. J. D. Pack and H. J. Monkhorst, Phys. Rev. B: Solid State 16, 1748 (1977). https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  37. J. R. Shewchuk, An Introduction to the Conjugate Gradient Method without the Agonizing Pain (Carnegie-Mellon Univ., Pittsburgh, 1994).

    Google Scholar 

  38. T. Steihaug, SIAM J. Numer. Anal. 20, 626 (1983). https://doi.org/10.1137/0720042

Download references

FUNDING

The study was carried out with financial support from the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment in the science field no. 0852-2020-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Usoltsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pnevskaya, A.Y., Kozyr, E.G., Al-Jaf, B.J. et al. First Principal Simulation of Palladium Nanocatalysts Surfaces. J. Surf. Investig. 15, 1270–1277 (2021). https://doi.org/10.1134/S102745102106015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102106015X

Keywords:

Navigation