Skip to main content
Log in

Influence of the Substrate Roughness on the Accuracy of Measuring the Impurity Depth Distribution by Secondary-Ion Mass Spectrometry

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Knowing the distribution of the impurity concentration in the surface layers of solids is of great importance in technologies for modifying materials by methods of surface treatment. For these purposes, it is promising to use secondary-ion mass spectrometry. Due to the fact that the depths of the surface layers analyzed by this method do not exceed several microns, the task of reducing the influence of the microroughness of the analyzed surface on the results of measuring the distribution of the impurity concentration over depth becomes urgent. Using the example of the “zirconium ceramics–thin aluminum film” system, the methodological issues of minimizing the effect of the ceramic surface microrelief on measuring the distribution of aluminum impurity ions over the sample depth after thermal annealing are solved. It is shown that the measurement accuracy increases by an order of magnitude or more if, in addition to the main measurement of the sample after thermal annealing, the measurement of the base sample, which is identical to the control sample, is carried out before thermal annealing. The desired distribution of impurity ions over the depth of the sample is determined by subtracting the distribution obtained for the base sample from the distribution of the impurity in the control sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. C. Peng, X. Gao, L. Wu, et al., Appl. Phys. Lett. 114, 011905 (2019). https://doi.org/10.1063/1.5054954

    Article  CAS  Google Scholar 

  2. H. Zhong, J. Zhang, J. Shen, G. Liang, S. Zhang, M. Xu, X. Yu, S. Yan, G. E. Remnev, and X. Le, Vacuum 179, 109541 (2020). https://doi.org/10.1016/j.vacuum.2020.109541

    Article  CAS  Google Scholar 

  3. F. Konusov, S. Pavlov, A. Lauk, V. Tarbokov, S. Karpov, V. Karpov, R. Gadirov, E. Kashkarov, and G. Remnev, Surf. Coat. Technol. 389, 125564 (2020). https://doi.org/10.1016/j.surfcoat.2020.125564

    Article  CAS  Google Scholar 

  4. V. E. Gromov, S. V. Gorbunov, Y. F. Ivanov, S. V. Vorobiev, and S. V. Konovalov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5, 974 (2011). https://doi.org/10.1134/S1027451011100107

    Article  CAS  Google Scholar 

  5. C. Zhang, P. Lv, H. Xia, Z. Yang, S. Konovalov, X. Chen, and Q. Guan, Vacuum 167, 263 (2019). https://doi.org/10.1016/j.vacuum.2019.06.022

    Article  CAS  Google Scholar 

  6. S. Strazdaite, E. Navakauskas, J. Kirschner, T. Sneideris, and G. Niaura, Langmuir 36, 4766 (2020). https://doi.org/10.1021/acs.langmuir.9b03826

    Article  CAS  Google Scholar 

  7. O. P. Choudhary and Priyanka, Int. J. Curr. Microbiol. Appl. Sci. 6, 1877 (2017). https://doi.org/10.20546/ijcmas.2017.605.207

    Article  CAS  Google Scholar 

  8. A. Grozdanov, P. Paunovic, V. V. Nikodinovska, and A. T. Dimitrov, Mater. Sci. Eng. Int. J. 3, 141 (2019). https://doi.org/10.15406/mseij.2019.03.00105

    Article  Google Scholar 

  9. A. M. Palve and S. S. Garje, Semicond. Sci. Technol. 36, 025007 (2021). https://doi.org/10.1088/1361-6641/abcdfa

    Article  CAS  Google Scholar 

  10. D. Kurouski, A. Dazzi, R. Zenobi, and A. Centrone, Chem. Soc. Rev. 49, 3315 (2020). https://doi.org/10.1039/c8cs00916c

    Article  CAS  Google Scholar 

  11. R. P. Gunawardane and C. R. Arumainayagam, in Handbook of Applied Solid State Spectroscopy, Ed. by D. Vij (Springer, Boston, 2006). https://doi.org/10.1007/0-387-37590-2_10

  12. H. Kambalathmana, A. M. Flatae, L. Hunold, F. Sledz, J. Müller, M. Hepp, P. Schmuki, M. S. Killian, S. Lagomarsino, N. Gelli, S. Sciortino, L. Giuntini, E. Wörner, C. Wild, B. Butz, and M. Agio, Carbon 174, 295 (2021). https://doi.org/10.1016/j.carbon.2020.12.031

    Article  CAS  Google Scholar 

  13. S. A. Gyngazov, A. P. Surzhikov, T. S. Frangul’yan, and A. V. Chernyavskii, Russ. Phys. J. 45, 753 (2002). https://doi.org/10.1023/A:1021956128414

    Article  CAS  Google Scholar 

  14. S. A. Ghyngazov, A. V. Chernyavskii, and A. B. Petrova, Russ. Phys. J. 60, 812 (2017). https://doi.org/10.1007/s11182-017-1143-2

    Article  CAS  Google Scholar 

  15. F. Benier, in Physics of Electrolytes, Vol. 1: Transport Processes in Solid Electrolytes and in Electrods, Ed. by J. Hladik (Academic, New York, 1972; Mir, Moscow, 1978).

  16. Yu. A. Kudryavtsev, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 1, 106 (2020). https://doi.org/10.31857/S1028096020010094

  17. V. K. Larin, V. M. Kondakov, E. N. Malyi, V. A. Matyukha, N. V. Dedov, et al., Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 5, 59 (2003).

Download references

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment “Science” (project no. FSWW-2020-0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ghyngazov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghyngazov, A.S., Surzhikov, A.P. & Ghyngazov, S.A. Influence of the Substrate Roughness on the Accuracy of Measuring the Impurity Depth Distribution by Secondary-Ion Mass Spectrometry. J. Surf. Investig. 15, 1191–1194 (2021). https://doi.org/10.1134/S1027451021060094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021060094

Keywords:

Navigation