Skip to main content
Log in

Light Transmission and Surface Topography of KU-1 Optical Quartz After Sputtering and Cleaning from Al Films in RF Discharge of H2(D2)–Ne Mixtures

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

In plasma devices, in which plasma–wall interaction and material migration are significant, the diagnostic-window transmission may decrease due to the contamination of plasma-cleaning components by sputtered materials. We discuss the cleaning of KU-1 fused silica, which simulates the diagnostic window, from aluminum films in RF plasma generated in pure H2(D2) and Ne and in H2(D2)–0.23Ne mixtures. Aluminum is used as a chemical analogue of Be, which is the main material of the International Thermonuclear Experimental Reactor (ITER) first wall. The morphology of the plasma-treated surface is investigated by atomic force microscopy, the chemical composition is analyzed by X-ray photoelectron spectroscopy, and the transmission spectra in the range 400−1000 nm shows that plasma cleaning is accompanied by the slight reduction of quartz to suboxides and a simultaneous decrease in roughness Rq from 1.3 up to 1.0 nm. After plasma treatment of the quartz surface, a decrease in light transmission by 1.5–2% in the wavelength range 400–750 nm is observed. Further sputtering of the purified quartz surface with the removal of a layer with a thickness of more than 300 nm is accompanied by gradual smoothing of the surface and a decrease in Rq to 1 nm, but with the retention of reduced light transmission. All investigated gases, hydrogen isotopes, neon and D2(H2)–Ne mixtures, are suitable for removing Al films from the quartz surface at a RF power of several W/cm2 and temperatures of 20–100°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. ITER Technical Basis, IAEA/ITER EDA/DS/24 (Int. At. Energy Agency, Vienna, 2002), p. 816.

  2. T. Hirai, S. Panayotis, V. Barabash, et al., Nucl. Mater. Energy 9, 616622 (2016). https://doi.org/10.1016/j.nme.2016.07.003

    Article  Google Scholar 

  3. G. J. Van Rooij, J. W. Coenen, L. Aho-Mantila, et al., J. Nucl. Mater. 438, 42 (2013).

    Article  Google Scholar 

  4. A. Kallenbach, M. Bernet, R. Dux, et al., Plasma Phys. Controlled Fusion 55, 124041 (2013).

    Article  Google Scholar 

  5. E. E. Mukhin, G. S. Kurskiev, A. V. Gorbunov, et al., Nucl. Fusion 59, 086052 (2019). https://doi.org/10.1088/1741-4326/ab/cd5

    Article  CAS  Google Scholar 

  6. P. Shigin, N. Babinov, G. De Temmerman, A. Danisi, et al., Fusion Eng. Des. 164, 112162 (2021).

    Article  CAS  Google Scholar 

  7. D. V. Orlinski and V. T. Gritsyna, Probl. At. Sci. Technol., Ser.: Plasma Phys., No. 3, 60 (2000).

  8. S. Veprek, C. Wang, and M. G. J. Veprek-Heijman, J. Vac. Sci. Technol., A 26, 313 (2008).

    Article  CAS  Google Scholar 

  9. L. Marot, C. Linsmeier, B. Eren, L. Moser, R. Steiner, and E. Meyer, Fusion Eng. Des. 88, 1718 (2013).

    Article  CAS  Google Scholar 

  10. A. E. Gorodetsky, V. L. Bukhovets, A. V. Markin, V. I. Zolotarevskii, R. Kh. Zalavutdinov, N. A. Babinov, A. M. Dmitriev, A. G. Razdobarin, and E. E. Mukhin, Tech. Phys. 66, 288 (2021). https://doi.org/10.1134/S1063784221020122

    Article  CAS  Google Scholar 

  11. F. J. Grunthaner, B. F. Lewis, and N. Zamini, IEEE Trans. Nucl. Sci. NS-27, 1640 (1980).

    Article  Google Scholar 

  12. A. E. Gorodetsky, V. L. Bukhovets, A. V. Markin, V. I. Zolotarevsky, R. Kh. Zalavutdinov, E. E. Mukhin, and A. G. Razdobarin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 15, 660 (2021). https://doi.org/10.1134/S1027451021040054

    Article  CAS  Google Scholar 

  13. L. J. Zeng, T. Greibe, S. Nik, C. M. Wilson, P. Delsing, and E. Olsson, J. Appl. Phys. 113, 143905 (2013). https://doi.org/10.1063/1.4801798

    Article  CAS  Google Scholar 

  14. J. E. Harvey, S. Schroder, N. Choi, and A. Duparre, Opt. Eng. 519, 013402 (2012).

    Article  Google Scholar 

  15. R. N. Pfisterer, Opt. Photonics News, No. 10, 16 (2011).

    Google Scholar 

  16. V. I. Vedeneev, L. V. Gurvich, V. N. Kondrat’ev, V. A. Medvedev, and E. L. Frankevich, Energy of Chemical Bond (Akad. Nauk SSSR, Moscow, 1962) [in Russian].

    Google Scholar 

  17. D. D. Wagman, W. H. Evans, V. S. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churley, and R. L. Nuttall, J. Phys. Chem. Ref. Data 11 (2 suppl.), 2 (1982).

    Google Scholar 

  18. L. T. Zhuravlev, Colloids and Surfaces, A 173, 1 (2000). https://doi.org/10.1016/S0927-7757(00)00556-2

    Article  CAS  Google Scholar 

  19. G. Hass and C. D. Salzberg, J. Opt. Soc. Am. 44, 181 (1954).

    Article  CAS  Google Scholar 

  20. E. Centurioni, Appl. Opt. 44, 7532 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. E. Gorodetsky or A. V. Markin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorodetsky, A.E., Markin, A.V., Bukhovets, V.L. et al. Light Transmission and Surface Topography of KU-1 Optical Quartz After Sputtering and Cleaning from Al Films in RF Discharge of H2(D2)–Ne Mixtures. J. Surf. Investig. 15, 1029–1038 (2021). https://doi.org/10.1134/S102745102105027X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102105027X

Keywords:

Navigation