Skip to main content
Log in

Mass-Spectrometry Investigation of the Kinetics of the Molecular-Beam Epitaxy of CdTe

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The adsorption of Cd and Te on the surface of a CdTe crystal is studied in situ using a mass spectrometer in the temperature range of 500−700 K and at an incident flux intensity of VCd = 10–2−2 single layers per second, SL/s, and VTe = 0.5−5 SL/s. Computer programs for controlling the experiment and processing the obtained information are developed. The growth parameters are in good agreement with the proposed model of adsorption. The activation energies of the “evaporation” (transition of atoms from the crystal to the adsorption layer) and desorption of Cd atoms and Te2 molecules are 2 and 0.5 eV and 0.59 eV, respectively. It is established that the dependence of the growth rate on the Te2 flux at a constant Cd flux is linear over a wide range, while the dependence of the growth rate on the Cd flux at a constant Te2 flux is nonlinear and reaches saturation. The growth parameters depend on the structural features of the crystal surface (roughness, polycrystallinity, and mosaicity) accompanying film growth at large deviations from equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. J. R. Arthur, Surf. Sci. 500, 189 (2002). https://doi.org/10.1016/S0039-6028(01)01525-4

    Article  CAS  Google Scholar 

  2. P. Finnie and Y. Homma, Surf. Sci. 500, 437 (2002). https://doi.org/10.1016/S0039-6028(01)01730-7

    Article  CAS  Google Scholar 

  3. K. Y. Cheng, J. Vac. Sci. Technol., A 31, 050814 (2013). https://doi.org/10.1116/1.4816932

    Article  CAS  Google Scholar 

  4. T. Shu, P. Lu, B. Zhang, M. Wang, L. Chen, X. Fu, C. Xu, and H. Wu, J. Crystal Growth 420, 17 (2015). https://doi.org/10.1016/j.jcrysgro.2015.03.031

    Article  CAS  Google Scholar 

  5. K. Meinander and J. S. Preston, Surf. Sci. 632, 93 (2015). https://doi.org/10.1016/j.susc.2014.09.013

    Article  CAS  Google Scholar 

  6. S. Neretina, R. A. Hughes, J. F. Britten, N. V. Sochinskii, J. S. Preston, and P. Mascher, Nanotecnology 18, 275301 (2007). https://doi.org/10.1088/0957-4484/18/27/275301

    Article  CAS  Google Scholar 

  7. M. A. Herman, Thin Solid. Films, No. 3, 267 (1995).

    Google Scholar 

  8. H. Shelton and A. Y. H. Cho, J. Appl. Phys. 37, 3544 (1966). https://doi.org/10.1063/1.1708898

    Article  CAS  Google Scholar 

  9. J. B. Hudson and J. S. Sandejas, J. Vac. Sci. Technol., A 4, 230 (1967).

    Article  CAS  Google Scholar 

  10. Yu. A. Gel’man, Yu. M. Dymshits, Yu. F. Samokhvalov, A. F. Sen’ko, V. F. Vinogradov, I. E. Lifshits, E. Ya. Stanishevskii, and A. A. Chernov, Prib. Tekh. Eksp., No. 5, 181 (1994).

  11. V. I. Mikhailov and L. E. Polyak, Prib. Tekh. Eksp., No. 5, 160 (2002).

  12. V. I. Mikhailov, L. E. Polyak, and V. M. Kanevskii, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 1, 660 (2007).

    Article  Google Scholar 

  13. V. I. Mikhailov, L. E. Polyak, and V. M. Kanevskii, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 1, 342 (2007).

    Article  Google Scholar 

  14. V. I. Mikhailov, A. V. Butashin, V. M. Kanevskii, L. E. Polyak, E. V. Rakova, A. E. Muslimov, and V. B. Kvartalov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 5, 595 (2011).

    Article  CAS  Google Scholar 

  15. P. Goldfinger and M. Jeunehomme, Trans. Faraday Soc. 59, 2851 (1963). https://doi.org/10.1039/TF9635902851

    Article  CAS  Google Scholar 

  16. D. L. Smith and V. Y. Pickhardt, J. Appl. Phys. 46, 2366 (1975). https://doi.org/10.1063/1.321915

    Article  CAS  Google Scholar 

  17. J. P. Gaillard, Rev. Phys. Appl. 22, 457 (1987). https://doi.org/10.1051/rphysap:01987002206045700

    Article  Google Scholar 

Download references

Funding

This work was carried out within the framework of the State Contract for the Crystallography and Photonics Federal Research Center, Russian Academy of Sciences, and according to the program of fundamental research of the Presidium of the Russian Academy of Sciences. Equipment of the common use center of the Crystallography and Photonics Federal Research Center was used in this study with support of the Ministry of Education and Science of the Russian Federation (project RFMEFI62119X0035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Mikhaylov.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhaylov, V.I., Polyak, L.E. Mass-Spectrometry Investigation of the Kinetics of the Molecular-Beam Epitaxy of CdTe. J. Surf. Investig. 15, 683–695 (2021). https://doi.org/10.1134/S1027451021040133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021040133

Keywords:

Navigation