Skip to main content
Log in

Optical Properties of Aluminum- and Silicon-Nitride Films and Al–Si–N Nanocomposite Coatings Deposited by Reactive Magnetron Sputtering

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

In this paper, we study the optical properties of aluminum- and silicon-nitride films and Al–Si–N coatings with variable atomic composition deposited by reactive magnetron sputtering on glass, silicon, and steel substrates. The absorption and luminescence characteristics are determined by the composition of the coatings and microstructure and depend on the physical properties of the substrate. The absorption and luminescence centers are associated with intrinsic defects in the nitrides and their simplest complexes. The relationships between the accumulation of growth defects, their interaction, the type of distribution of localized states, the band gap, and the stability of the optical properties are established. At an increase in the silicon content in the coatings, the degree of static induced disorder increases, and the contribution of the continuous distribution of the defect levels and interband absorption increases. Silicon-containing defects stabilize the optical properties of the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Y. Cho, B. Dierre, N. Fukata, et al., Scr. Mater. 110, 109 (2016). https://doi.org/10.1016/j.scriptamat.2015.08.013

    Article  CAS  Google Scholar 

  2. L. Trinkler and B. Berzina, Radiat. Meas. 71, 232 (2011). https://doi.org/10.1016/j.radmeas.2014.02.016

    Article  CAS  Google Scholar 

  3. D. F. Hevia, C. Stampfl, F. Vines, and F. Illas, Phys. Rev. B: Condens. Matter Mater. Phys. 88, 085202 (2013). https://doi.org/10.1103/PhysRevB.88.085202

    Article  CAS  Google Scholar 

  4. R. Collazo, J. Xie, B. E. Gaddy, et al., Appl. Phys. Lett. 100, 191914 (2012). https://doi.org/10.1063/1.4717623

    Article  CAS  Google Scholar 

  5. M. Alevli, C. Ozgit, I. Donmez, and N. Biyikli, J. Vac. Sci. Technol., A 30, 021506 (2012). https://doi.org/10.1116/1.3687937

    Article  CAS  Google Scholar 

  6. M. Bickermann, B. M. Epelbaum, O. Filip, et al., Phys. Status Solidi C 7, 1743 (2010). https://doi.org/10.1002/pssc.200983422

    Article  CAS  Google Scholar 

  7. R. S. Bonilla, B. Hoex, Ph. Hamer, and P. R. Wilshaw, Phys. Status Solidi A 214, 1700293 (2017). https://doi.org/10.1002/pssa.201700293

    Article  CAS  Google Scholar 

  8. L. V. Goncharova, P. H. Nguyen, V. L. Karner, et al., J. Appl. Phys. 118, 224302 (2015). https://doi.org/10.1063/1.4936369

    Article  CAS  Google Scholar 

  9. K. Sonoda, E. Tsukuda, M. Tanizawa, and Y. Yamaguchi, J. Appl. Phys. 117, 104501 (2015). https://doi.org/10.1063/1.4914163

    Article  CAS  Google Scholar 

  10. R. P. Vedula, N. L. Anderson, and A. Strachan, Phys. Rev. B: Condens. Matter Mater. Phys. 85, 205209 (2012). https://doi.org/10.1103/PhysRevB.85.205209

    Article  CAS  Google Scholar 

  11. Q. X. Guo, T. Tanaka, M. Nishio, and H. Ogawa, Vacuum 80, 716 (2006). https://doi.org/10.1016/j.vacuum.2005.11.037

    Article  CAS  Google Scholar 

  12. V. V. Uglov, G. Abadias, S. V. Zlotski, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 354, 264 (2015). https://doi.org/10.1016/j.nimb.2014.12.043

    Article  CAS  Google Scholar 

  13. N. V. Gavrilov, A. S. Kamenetskikh, and A. V. Chukin, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11, 671 (2017). https://doi.org/10.1134/S1027451017030272

    Article  CAS  Google Scholar 

  14. J. Musil, G. Remnev, V. Legostaev, et al., Surf. Coat. Technol. 307, 1112 (2016). https://doi.org/10.1016/j.surfcoat.2016.05.054

    Article  CAS  Google Scholar 

  15. A. V. Kabyshev, F. V. Konusov, A. L. Lauk, et al., Key Eng. Mater. 712, 3 (2016). https://doi.org/10.4028/www.scientific.net/KEM.712.3

  16. A. V. Kabyshev and F. V. Konusov, Fiz. Khim. Obrab. Mater., No. 1, 5 (2004).

  17. B. E. Gaddy, Z. Bryan, I. Bryan, et al., Appl. Phys. Lett. 104, 202106 (2014). https://doi.org/10.1063/1.4878657

    Article  CAS  Google Scholar 

  18. K. Irmscher, C. Hartmann, C. Guguschev, et al., J. Appl. Phys. 114, 123505 (2013). https://doi.org/10.1063/1.4821848

    Article  CAS  Google Scholar 

  19. P. Lu, R. Collazo, R. F. Dalmau, et al., Appl. Phys. Lett. 93, 131922 (2008). https://doi.org/10.1063/1.2996413

    Article  CAS  Google Scholar 

  20. T. Mattila and R. M. Nieminen, Phys. Rev. B: Condens. Matter Mater. Phys. 55, 9571 (1997).

    Article  CAS  Google Scholar 

  21. G. A. Slack, L. J. Schowalter, D. Morellic, and J. A. Freitas, J. Cryst. Growth 246, 287 (2002).

    Article  CAS  Google Scholar 

  22. Q. Hu, S. Tanaka, T. Yoneoka, and T. Noda, Nucl. Instrum. Methods Phys. Res., Sect. B 166, 70 (2000).

    Google Scholar 

  23. M. D. Efremov, V. A. Volodin, D. V. Marin, et al., Semiconductors 42, 202 (2008).

    Article  CAS  Google Scholar 

  24. V. A. Gritsenko, Phys.—Usp. 55, 498 (2012).

    Article  CAS  Google Scholar 

  25. S. S. Nekrashevich, A. V. Shaposhnikov, and V. A. Gritsenko, JETP Lett. 94, 202 (2011).

    Article  CAS  Google Scholar 

  26. S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, J. Appl. Phys. 77, 6534 (1995). https://doi.org/10.1063/1.359062

    Article  CAS  Google Scholar 

  27. M.-E. Grillo and S. D. Elliott, Phys. Rev. B: Condens. Matter Mater. Phys. 83, 085208 (2011). https://doi.org/10.1103/PhysRevB.83.085208

    Article  CAS  Google Scholar 

  28. G. Remnev, V. Tarbokov, S. Pavlov, et al., Vacuum 158, 65 (2018). https://doi.org/10.1016/j.vacuum.2018.09.022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. V. Konusov or S. K. Pavlov.

Ethics declarations

The study was supported by the Russian Foundation for Basic Research and ROSATOM project 20-21-00025 and within the framework of the State Task in the Field of Scientific Activity no. FSWW-2020-0008.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konusov, F.V., Pavlov, S.K., Lauk, A.L. et al. Optical Properties of Aluminum- and Silicon-Nitride Films and Al–Si–N Nanocomposite Coatings Deposited by Reactive Magnetron Sputtering. J. Surf. Investig. 15, 139–146 (2021). https://doi.org/10.1134/S1027451021010274

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021010274

Keywords:

Navigation