Skip to main content
Log in

Deuterium Retention in a Nanostructured Tungsten Surface Layer Formed during High-Temperature Irradiation with Helium Plasma

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The preliminary irradiation of a tungsten sample with low-energy helium ions (80 eV, flux of 1021 m−2 s−1) at a temperature of 1200–1250 K in a facility with an inductive RF discharge leads to the formation of a nanostructured tungsten surface layer, which is referred to as fuzz. After that, the sample is subjected to a set of annealing procedures and irradiations with \({\text{D}}_{3}^{ + }\) ions with an energy of 2 keV (0.67 keV per D) at low fluences of 1019–1020 m−2. Deuterium retention at each stage is analyzed by in-situ thermal desorption spectroscopy. An increase in the helium concentration in the sample leads to a significant change of deuterium retention. At high helium concentrations, deuterium retention becomes low. Annealing in the temperature range of 1000–1400 K leads to helium desorption, modification of the surface layer and defects, and, as a consequence, an increase in the amplitude of the main deuterium desorption peak and a shift of the peak to higher temperatures. Annealing at a temperature of 1600 K leads to removal of the nanostructured fuzz from the tungsten surface and a decrease in the deuterium retention on account of an increase in the reflection coefficient from a smoother surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. A. Pitts, X. Bonnin, F. Escourbiac, et al., Nucl. Mater. En. 20, 100696 (2019). https://doi.org/10.1016/j.nme.2019.100696

    Article  Google Scholar 

  2. C. Bachmann, F. Arbeiter, L. V. Boccaccini, et al., Fusion Eng. Des.112, 527 (2016). https://doi.org/10.1016/j.fusengdes.2016.05.040

    Article  CAS  Google Scholar 

  3. Z. R. Harutyunyan, Yu. M. Gasparyan, V. S. Efimov, et al., Bull. Russ. Acad. Sci.: Phys. 84, 727 (2020). https://doi.org/10.3103/S1062873820060040

    Article  CAS  Google Scholar 

  4. O. V. Ogorodnikova, T. Schwarz-Selinger, K. Sugiyama, and V. Kh. Alimov, J. Appl. Phys. 109 013309 (2011). https://doi.org/10.1063/1.3505754

    Article  CAS  Google Scholar 

  5. V. Kh. Alimov, W. M. Shu, J. Roth, et al., Phys. Scr. 138, 014048 (2009). https://doi.org/10.1088/0031-8949/2009/T138/014048

    Article  CAS  Google Scholar 

  6. G. De Temmerman, T. Hirai, and R. A. Pitts, Plasma Phys. Controlled Nucl. Fusion Res. 60, 044018 (2018). https://doi.org/10.1088/1361-6587/aaaf62

    Article  CAS  Google Scholar 

  7. S. Takamura, N. Ohno, D. Nishijima, and S. Kajita, Plasma Fusion Res. 1, 051 (2006). https://doi.org/10.1585/pfr.1.051

  8. S. Kajita, W. Sakaguchi, N. Ohno, et al., Nucl. Fusion 49, 095005 (2009). https://doi.org/10.1088/0029-5515/49/9/095005

    Article  CAS  Google Scholar 

  9. K. Wang, R. P. Doerner, M. J. Baldwin, et al., Sci. Rep. 7, 1 (2017). https://doi.org/10.1038/srep42315

    Article  CAS  Google Scholar 

  10. C. M. Parish, K. Wang, R. P. Doerner, and M. J. Baldwin, Scr. Mater. 127, 132 (2017). https://doi.org/10.1016/j.scriptamat.2016.09.018

    Article  CAS  Google Scholar 

  11. O. V. Ogorodnikova, K. S. Klimov, A. G. Poskakalov, et al., J. Nucl. Mater. 515, 150 (2019). https://doi.org/10.1016/j.jnucmat.2018.12.023

    Article  CAS  Google Scholar 

  12. A. Rusinov, Y. Gasparyan, N. Trifonov, et al., J. Nucl. Mater. 41, 645 (2011). https://doi.org/10.1016/j.jnucmat.2010.10.069

    Article  CAS  Google Scholar 

  13. M. Zibrov, S. Ryabtsev, Y. Gasparyan, and A. Pisarev, J. Nucl. Mater. 477, 292 (2016). https://doi.org/10.1016/j.jnucmat.2016.04.052

    Article  CAS  Google Scholar 

  14. S. Davies, J. A. Rees, and D. L. Seymour, Vacuum 101, 416 (2014). https://doi.org/10.1016/j.vacuum.2013.06.004

    Article  CAS  Google Scholar 

  15. Y. Gasparyan, S. Ryabtsev, V. Efimov, et al., Phys. Scr. 171, 014017 (2020). https://doi.org/10.1088/1402-4896/ab4068

    Article  Google Scholar 

  16. M. Yajima, N. Yoshida, S. Kajita, et al., J. Nucl. Mater. 449, 9 (2014). https://doi.org/10.1016/j.jnucmat.2014.02.027

    Article  CAS  Google Scholar 

  17. S. Ryabtsev, Y. Gasparyan, M. Zibrov, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 382, 101 (2016). https://doi.org/10.1016/j.nimb.2016.04.038

    Article  CAS  Google Scholar 

  18. K. Doi, H. T. Lee, N. Tanaka, et al., Fusion Eng. Des. 136, 100 (2018). https://doi.org/10.1016/j.fusengdes.2018.01.001

    Article  CAS  Google Scholar 

Download references

Funding

Microscopic studies of the sample surface were conducted at the Center for collective use “Heterostructure Microwave Electronics and Wide-Gap Semiconductor Physics” under the support of the Ministry of Science and Higher Education of the Russian Federation (project no. 0723-2020-0043). This work was supported by the Russian Science Foundation (project no. 17-72-20191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. R. Harutyunyan.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harutyunyan, Z.R., Ogorodnikova, O.V., Aksenova, A.S. et al. Deuterium Retention in a Nanostructured Tungsten Surface Layer Formed during High-Temperature Irradiation with Helium Plasma. J. Surf. Investig. 14, 1248–1253 (2020). https://doi.org/10.1134/S1027451020060245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020060245

Keywords:

Navigation