Skip to main content
Log in

Temperature Dependence of Deuterium and Helium Accumulation in W and Ta Coatings during D+- or He+-Ion Irradiation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Thermal desorption spectrometry (TDS) is used to study the processes of the accumulation and thermal release of deuterium and helium in tungsten and tantalum coatings of three-layer composites consisting of a stainless-steel substrate and an intermediate titanium layer, depending on the temperature of the samples upon 20-keV \({\text{D}}_{{\text{2}}}^{ + }\)- or He+-ion irradiation. The sample temperature range 290–870 K affects the TDS spectra of these gases. With an increase in the sample temperature the deuterium and helium concentrations and capture coefficients decrease in coatings of both types. The mechanisms of deuterium and helium accumulation and thermal desorption as well as the formation of crystal lattice defects are proposed. Deuterium and helium are captured by radiation-induced defects of the vacancy type, forming gas–vacancy complexes. An increase in the sample temperature during \({\text{D}}_{{\text{2}}}^{ + }\)- or He+-ion irradiation enhances the thermal desorption of implanted gases caused by the dissociation of gas–vacancy complexes, the migration of gas particles through lattice interstices to the surface, and deuterium recombination into a D2 molecule and its release to free space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. V. Golubeva, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., No. 4, 54 (2009).

  2. L. H. Taylor and L. Green, Fusion Eng. Des 32–33, 105 (1996).

    Article  Google Scholar 

  3. T. Hirai, V. Philipps, T. Tanabe, M. Wada, A. Huber, S. Brezinsek, J. von Seggern, J. Linke, T. Ohgo, K. Ohya, et al., J. Nucl. Mater. 307–311, 79 (2002).

    Article  Google Scholar 

  4. M. Dias, R. Mateus, N. Catarino, N. Franco, D. Nunes, J. B. Correia, P. A. Carvalho, K. Hanada, C. Sarbu, and E. Alves, J. Nucl. Mater. 442 (1–3), 69 (2013).

    Article  CAS  Google Scholar 

  5. V. A. Makhlai, I. E. Garkusha, J. Linke, S. V. Malykhin, N. N. Aksenova, O. V. Byrka, S. S. Herashchenko, S. V. Surovitskiy, and M. Wirtz, Nucl. Mater. Energy 9, 116 (2016).

    Article  Google Scholar 

  6. V. V. Bobkov, A. V. Onishchenko, O. V. Sobol, R. I. Starovoitov, Yu. I. Kovtunenko, Yu. E. Logachev, and L. P. Tishchenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4 (5), 852 (2010).

    Article  Google Scholar 

  7. V. V. Bobkov, L. P. Tishchenko, A. V. Onishchenko, E. N. Zubarev, R. I. Starovoitov, Yu. I. Kovtunenko, Yu. E. Logachev, and L. A. Gamayunova, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5 (4), 806 (2011).

    Article  CAS  Google Scholar 

  8. V. V. Bobkov, R. I. Starovoitov, L. P. Tishchenko, Yu. I. Kovtunenko, and L. A. Gamayunova, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (5), 853 (2014).

    Article  CAS  Google Scholar 

  9. N. A. Azarenkov, V. V. Bobkov, L. P. Tishchenko, R. I. Starovoitov, Yu. I. Kovtunenko, Yu. E. Logachev, and L. A. Gamayunova, Probl. At. Sci. Technol., Ser.: Plasma Phys., No. 6, 73 (2016).

  10. V. V. Bobkov, L. P. Tishchenko, Yu. I. Kovtunenko, O. B. Tsapenko, A. O. Skrynik, Yu. E. Logachev, and L. A. Gamayunova, Probl. At. Sci. Technol., Ser.: Plasma Phys., No. 6, 63 (2018).

  11. J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, Ion Implantation Techniques: Lectures Given at the Ion Implantation School in Connection with Fourth International Conference on Ion Implantation: Equipment and Techniques (Berchtesgaden, Fed. Rep. of Germany, September, 13–15) (Springer, Berlin, 1982), p. 122.

  12. B. M. Smirnov, Atomic Collisions and Elementary Processes in Plasma (Atomizdat, Moscow, 1968) [in Russian].

    Google Scholar 

  13. L. P. Tishchenko, T. I. Peregon, Yu. I. Kovtunenko, V. V. Bobkov, A. V. Onishchenko, and R. I. Starovoitov, Izv. Akad. Nauk, Ser. Fiz. 70 (8) 1197 (2006).

    CAS  Google Scholar 

  14. V. V. Bobkov, R. I. Starovoitov, L. P. Tishchenko, E. N. Zubarev, Yu. I. Kovtunenko, and Yu. E. Logachev, in Proc XX Int. Conf. VIP-2011 (Zvenigorod, Russia, 25–29 August 2011) (Moscow, 2011), Vol. 2, p. 61.

  15. I. I. Arkhipov, S. L. Kanashenko, V. M. Sharapov, R. Kh. Zalavutdinov, and A. E. Gorodetsky, J. Nucl. Mater. 363–365, 1168 (2007).

    Article  Google Scholar 

  16. H. Iwakiri, K. Yasunaga, K. Morishita, and N. Yoshida, J. Nucl. Mater. 283–287, 1134 (2000).

    Article  Google Scholar 

  17. Y. Watanabe, H. Iwakiri, N. Yoshida, K. Morishita, and A. Kohyama, Nucl. Instrum. Methods Phys. Res., Sect. B 255, 32 (2007).

    CAS  Google Scholar 

  18. S. Nagata, K. Takahiro, S. Horiike, and S. Yamaguchi, J. Nucl. Mater. 266–269, 1151 (1999).

    Article  Google Scholar 

  19. V. S. Efimov, Yu. M. Gasparyan, and A. A. Pisarev, in Proc XX Int. Conf. VIP-2011 (Zvenigorod, Russia, 25–29 August 2011) (Moscow, 2011), Vol. 1, p. 306.

  20. H. Eleveld and A. van Veen, J. Nucl. Mater. 212, 1421 (1994).

    Article  Google Scholar 

  21. V. V. Kirsanov, Defects in Crystals and Computer Simulation thereof (Nauka, Leningrad, 1980) [in Russian].

    Google Scholar 

  22. A. Debelle, P. -E. Lhuillier, M. -F. Barthe, T. Sauvage, and P. Desgardin, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 223 (2010).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Bobkov or L. P. Tishchenko.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkov, V.V., Tishchenko, L.P., Kovtunenko, Y.I. et al. Temperature Dependence of Deuterium and Helium Accumulation in W and Ta Coatings during D+- or He+-Ion Irradiation. J. Surf. Investig. 14, 899–905 (2020). https://doi.org/10.1134/S1027451020050031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020050031

Keywords:

Navigation