Skip to main content
Log in

Synthesis, Microstructure, Dielectric and Ferroelectric Properties of (Na,Bi,K)TiO3 Ceramics

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Single-phase ceramic samples with the perovskite structure [(Na0.5Bi0.5)1 – xKx] TiO3 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06) are prepared by the method of solid-state synthesis and their structure, microstructure and dielectric and ferroelectric properties are studied. An increase in the unit-cell parameters of the perovskite lattice as a result of an increase in the K-cation content in accordance with the ratio of the radii of cations in the A sublattice of the perovskite structure is proved. The method of second-harmonic generation confirms that the introduction of potassium cations in the A positions of the perovskite lattice promotes enhancement of the ferroelectric properties of the studied samples. Dielectric-relaxation effects are revealed, which indicate the presence of vacancies in the oxygen sublattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi, and Y. Takita, J. Electrochem. Soc. 145, 3177 (1998).

    Article  CAS  Google Scholar 

  2. K. Huang, R. S. Tichy, and J. B. Goodenough, J. Am. Ceram. Soc. 81, 2576 (1998).

    Article  CAS  Google Scholar 

  3. S. P. S. Badwal, S. Giddey, C. Munnings, and A. Kulkarni, J. Austral. Ceram. Soc. 50, 23 (2014).

    CAS  Google Scholar 

  4. R. Biswal and K. Biswas, Int. J. Hydrogen Energy 40, 509 (2015).

    Article  CAS  Google Scholar 

  5. P. Majewski, M. Rozumek, C. A. Tas, and F. Aldinger, J. Electroceram. 8, 65 (2002).

    Article  CAS  Google Scholar 

  6. P. K. Panda, J. Mater. Sci. 44, 5049 (2009).

    Article  CAS  Google Scholar 

  7. V. V. Shvartsman and D. C. Lupascu, J. Am. Ceram. Soc. 95, 1 (2012).

    Article  CAS  Google Scholar 

  8. J. Rödel, K. G. Webber, R. Dittmer, Jo. Wook, M. Kimura, and D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015).

    Article  Google Scholar 

  9. L. Ming, H. Zhang, S. N. Cook, L. Linhao, J. A. Kilner, J. M. Reaney, and D. C. Sinclair, Chem. Mater. 27, 629 (2015).

    Article  Google Scholar 

  10. S. B. Vakhrushev, V. A. Isupov, B. E. Kvyatkovsky, N. M. Okuneva, I. P. Pronin, G. A. Smolensky, and P. P. Syrnikov, Ferroelectrics 63, 153 (1985).

    Article  CAS  Google Scholar 

  11. G. O. Jones and P. A. Thomas, Acta Crystallogr., Sect. B: Struct. Sci. 58, 168 (2002).

    Article  CAS  Google Scholar 

  12. V. Dorcet, G. Trolliard, and P. Boullay, Chem. Mater. 20, 5061 (2008).

    Article  CAS  Google Scholar 

  13. X. Tan, M. Cheng, J. Frederick, S. Beckman, and K. Webber, J. Am. Ceram. Soc. 94, 4091 (2011).

    Article  CAS  Google Scholar 

  14. E. D. Politova, D. A. Strebkov, A. V. Mosunov, N. V. Golubko, G. M. Kaleva, N. V. Sadovskaya, and S. Yu. Stefanovich, Bull. Russ. Acad. Sci.: Phys. 82, 269 (2018).

    Article  CAS  Google Scholar 

  15. E. D. Politova, A. V. Mosunov, D. A. Strebkov, N. V. Golubko, G. M. Kaleva, B. A. Loginov, A. B. Loginov, and S. Yu. Stefanovich, Inorg. Mater. 54, 744 (2018).

    Article  CAS  Google Scholar 

  16. E. D. Politova, N. V. Golubko, G. M. Kaleva, A. V. Mosunov, N. V. Sadovskaya, D. A. Belkova, and S. Yu. Stefanovich, Phys. Solid State 60, 428 (2018).

    Article  CAS  Google Scholar 

  17. E. D. Politova, N. V. Golubko, A. V. Mosunov, N. V. Sadovskaya, G. M. Kaleva, D. A. Kiselev, and A. M. Kislyuk, Ferroelectrics 531, 22 (2018).

    Article  CAS  Google Scholar 

  18. E. D. Politova, G. M. Kaleva, N. V. Golubko, A. V. Mosunov, N. V. Sadovskaya, D. A. Belkova, and S. Yu. Stefanovich, Crystallogr. Rep. 63, 266 (2018).

    Article  CAS  Google Scholar 

  19. A. V. Mosunov, N. U. Venskovskii, and G. M. Kaleva, Ferroelectrics 299, 149 (2004).

    Article  CAS  Google Scholar 

  20. W. Li, C. Wang, J. Zhu, and Y. Wang, J. Phys.: Condens. Matter 16, 9201 (2004).

    CAS  Google Scholar 

  21. E. D. Politova, E. A. Fortalnova, G. M. Kaleva, A. V. Mosunov, M. G. Safronenko, N. U. Venskovskii, V. V. Shvartsman, and W. Kleemann, Ferroelectrics 391, 3 (2009).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a subsidy allocated by the Federal Research Center for Physics and Physics of the Khabarovsk Branch of the Russian Academy of Sciences for the fulfillment of the state task on topic No. 45.22 “Fundamentals of creating a new generation of nanostructured systems with unique operational electrical and magnetic properties” (AAAA-A18-118012390045-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Kaleva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaleva, G.M., Politova, E.D., Mosunov, A.V. et al. Synthesis, Microstructure, Dielectric and Ferroelectric Properties of (Na,Bi,K)TiO3 Ceramics. J. Surf. Investig. 14, 663–667 (2020). https://doi.org/10.1134/S1027451020040102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020040102

Keywords:

Navigation