Skip to main content
Log in

Nanocarbon in the Structure of a Hypereutectic Aluminum-Matrix Composite

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The peculiarities of the fine structure of Al–Si–Ni aluminum-matrix composite with a low thermal coefficient of linear expansion, mechanically activated with the addition of nanoscale reduced graphene oxide (RGO), is investigated. The structure is studied by X-ray diffraction analysis, scanning, transmission and high-resolution transmission electron microscopy. The presence of quasi-graphene layers on the surface of aluminum and silicon particles is detected and it is shown that this shell protects them from clumping upon mechanical alloying, which significantly increases the manufacturability of the process of mechanical activation and subsequent compaction. Thus, it is possible to obtain composite materials with a homogeneous structure and higher physical properties (the use of RGO instead of electrode graphite reduces the thermal coefficient of linear expansion (TCLE) of the composite by 10%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Science 306 (5696), 666 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  2. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  3. J. H. Los, K. V. Zakharchenko, M. I. Katsnelson, and A. Fasolino, Phys. Rev. B 91 (4), 045415 (2015). https://doi.org/10.1103/PhysRevB.91.045415

    Article  CAS  Google Scholar 

  4. M. J. Allen, V. C. Tung, and R. B. Kaner, Chem. Rev. 110, 132 (2010). https://doi.org/10.1021/cr900070d

    Article  CAS  Google Scholar 

  5. A. Gholampour, K. M. Valizadeh, D. N. H. Tran, et al., ACS Appl. Mater. Interfaces 9, 43275 (2017).

    Article  CAS  Google Scholar 

  6. L. Ming, W. Xu, Y. Yang, et al., Mater. Charact. 143, 197 (2018).

    Article  Google Scholar 

  7. Q. Yuan., Z. Qiu, G. Zhou, et al., Mater. Charact. 138, 215 (2018).

    Article  CAS  Google Scholar 

  8. G. Abrosimova, D. Matveev, E. Pershina, and A. Aronin, Mater. Lett. 183, 131 (2016). https://doi.org/10.1016/j.matlet.2016.07.053

    Article  CAS  Google Scholar 

  9. G. E. Abrosimova and A. S. Aronin, Phys. Solid State 51, 1765 (2009). https://doi.org/10.1134/S1063783409090017

    Article  CAS  Google Scholar 

  10. G. E. Abrosimova and A. S. Aronin, J. Surf. Invest.: X‑Ray, Synchrotron Neutron Tech. 9 (1), 134 (2015).

    Article  CAS  Google Scholar 

  11. V. V. Vasenev, V. N. Mironenko, and V. N. Butrim, Izv. VUZov, Poroshk. Metall. Funkts. Pokrytiya 3, 41 (2017).

    Article  Google Scholar 

  12. V. N. Mironenko, V. V. Vasenev, S. Y. Petrovich, and V. S. Myshlyaev, Tsvetn. Met. (Moscow, Russ. Fed.) 4 (904), 86 (2018).

  13. V. V. Vasenev, V. N. Mironenko, and V. N. Butrim, in Intern. Conf. Powder Metallurgy and Particulate Materials sponsored by the Metal Powder Industries Federation, Chicago, IL, June 24–27,2013 (Chicago, 2013), No. 7, p. 156.

  14. Q. Li, Ch. A. Rottmair, and R. F. Singer, Compos. Sci. Technol. 70, 2242 (2010).

    Article  CAS  Google Scholar 

  15. S. R. Bakshi and A. Agarwal, Carbon 49 (2011), 533.

    Article  CAS  Google Scholar 

  16. S. A. Bansal, A. P. Singh, and S. Kumar, Mater. Res. Express 5 (7), 075602 (2018).

    Article  Google Scholar 

  17. J. M. Molina-Aldareguia and M. R. Elizalde, Compos. Sci. Technol. 70, 2227 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out as part of the State task of the Institute of Physics and Technology, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Aronin, I. M. Aristova, G. E. Abrosimova or V. N. Mironenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aronin, A.S., Aristova, I.M., Abrosimova, G.E. et al. Nanocarbon in the Structure of a Hypereutectic Aluminum-Matrix Composite. J. Surf. Investig. 14, 668–672 (2020). https://doi.org/10.1134/S1027451020040023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020040023

Keywords:

Navigation