Skip to main content
Log in

Determination of the Mean-Statistical Positions of Atoms in a Corundum Structure from the Data of a Neutron-Diffraction Experiment Performed on Highly Fragmented Crystals of α-Al2O3 – δ

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The real structures of α-Al2O3 – δ anion-deficient corundum crystals characterized by a nonstoichiometry level of δ ~ 0.001, which are applied in X-ray, gamma and beta dosimetry, are neutronographically investigated for the first time. Neutron-scattering measurements are performed on two crystals sintered by the Stepanov method; the anion-vacancy contents are Ca = 8 × 1016 cm–3 for the radiation-sensitive crystal and Ca < 1014 cm–3 for the crystal taken after annealing in an oxygen atmosphere and not sensitive to radiation. With pronounced indications of significant fragmentedness revealed from attestation of these two crystals, in both cases the corundum structure is recognized, and the lattice parameters and atomic coordinates were found. Three approaches are considered for processing the neutron-scattering data obtained from the crystal with the smallest oxygen deficiency (Ca < 1014 cm–3), with the measured intensities corrected in different ways. The best results, which are numerically identical within the framework of the three considered approaches, are extracted from the “ideal crystal” model. The obtained results are verified for the structure characterized by Ca = 8 × 1016 cm–3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. R. Dobrovinskaya, L. A. Litvinov, and V. V. Pishchik, The Sapphire Encyclopedia (Institut monokristallov, Khar’kov, 2004) [in Russian].

  2. E. G. Yukihara and S. W. S. McKeever, Optically Stimulated Luminescence: Fundamentals and Applications (Wiley, Chichester, 2011).

    Book  Google Scholar 

  3. I. I. Mil’man, E. V. Moiseikin, and S. V. Nikiforov, J. Appl. Spectrosc. 72 (1), 151 (2005). https://doi.org/10.1007/s10812-005-0047-z

    Article  CAS  Google Scholar 

  4. A. Surdo, R. Abashev, I. Milman, and M. Vlasov, Radiat. Meas. 90, 192 (2016). https://doi.org/10.1016/j.radmeas.2015.12.027

    Article  CAS  Google Scholar 

  5. A. Kelly and G. W. Groves, Crystallography and Crystal Defects (Longman, London, 1970; Mir, Moscow, 1974).

  6. M. L. Kronberg, Acta Metall. 5 (9), 507 (1957). https://doi.org/10.1016/0001-6160(57)90090-1

    Article  CAS  Google Scholar 

  7. T. Huang, W. Parrish, N. Masciocchi, et al., Adv. X-Ray Anal. 33, 295 (1990).

    Google Scholar 

  8. V. I. Maksimov, V. I. Sokolov, A. I. Surdo, et al., IOP Conf. Ser.: Mater. Sci. Eng. 169, 012017–1 (2017). https://doi.org/10.1088/1757-899X/169/1/012017

  9. A. I. Sudro, Doctoral Dissertation in Mathematics and Physics (Ekaterinburg, 2007).

  10. F. A. Kroger, The Chemistry of Imperfect Crystals (North-Holland, Amsterdam, 1964; Mir, Moscow, 1969).

  11. A. A. Rempel and A. I. Gusev, Nonstoichiometry in Solids (Fizmatlit, Moscow, 2018) [in Russian].

    Google Scholar 

  12. B. Ya. Pines, Lectures in Structure Analysis (Izd-vo Khar’kovsk. univ., Khar’kov, 1967) [in Russian].

  13. G. Grzinic, Philos. Mag. A 52 (2), 161 (1985). https://doi.org/10.1080/01418618508237617

    Article  CAS  Google Scholar 

  14. B. Nikolin and A. Babkevich, Phase Transitions 16/17, 555 (1989). https://doi.org/10.1080/01411598908245731

    Article  Google Scholar 

  15. J. Yi and G. S. Canright, Phys. Rev. B 53 (9), 5198 (1996). https://doi.org/10.1103/PhysRevB.53.5198

    Article  CAS  Google Scholar 

  16. T. S. Hansen, M. M. Koza, and W. F. Kuhs, J. Phys.: Condens. Matter 20, 285104–1 (2008). https://doi.org/10.1088/0953-8984/20/28/285104

    Article  CAS  Google Scholar 

  17. S. J. Turneaure and Y. M. Gupta, J. Appl. Phys. 106, 033513–1 (2009). https://doi.org/10.1063/1.3187929

    Article  CAS  Google Scholar 

  18. J. B. Gosk, Cryst. Res. Technol. 45 (5), 465 (2010). https://doi.org/10.1002/crat.200900695

    Article  CAS  Google Scholar 

  19. T. Roisnel and J. Rodriguez-Carvajal, Winplotr, a grafic tool for powder diffraction. www.cdifx.univ-rennes1.fr/ winplotr/winplotr.htm.

  20. FULLPROF Suite. Crystallographic tools for Rietveld, profile matching & integrated intensity refinements of X-ray and/or neutron data. www.ill.eu/sites/fullprof/

  21. International Tables for Crystallography.Vol. A.Space Group Symmetry, Ed. by T. Hahn (Springer, Berlin, 2005).

    Google Scholar 

  22. F. Izumi, H. Asano, H. Murata, et al., J. Appl. Crystallogr. 20 (5), 411 (1987). https://doi.org/10.1107/S0021889887086382

    Article  CAS  Google Scholar 

  23. G. N. Darriba, M. Renteria, H. M. Petrilli, et al., Phys. Rev. 86, 075203–1 (2012). https://doi.org/10.1103/PhysRevB.86.075203

    Article  CAS  Google Scholar 

  24. G. E. Bacon, Neutron Diffraction (Clarendon Press, Oxford, 1955; Izd-vo inostr. lit., Moscow, 1957).

  25. Yu. Z. Nozik, R. P. Ozerov, and K. Henning, Structural Neutronography (Atomizdat, Moscow, 1979), Vol. 1.

    Google Scholar 

Download references

Funding

This work was financially supported by “UNU NMK IFM” within the scope of the state task of the topic “Potok” G.r. АААА-А18-118020190112-8 under the partial support of project no. 18-10-2-22 of the program of basic research of the Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Maksimov.

Additional information

Translated by A. Bannov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimova, E.N., Maksimov, V.I., Pirogov, A.N. et al. Determination of the Mean-Statistical Positions of Atoms in a Corundum Structure from the Data of a Neutron-Diffraction Experiment Performed on Highly Fragmented Crystals of α-Al2O3 – δ. J. Surf. Investig. 14, 324–332 (2020). https://doi.org/10.1134/S1027451020020482

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020020482

Keywords

Navigation