Skip to main content
Log in

Evolution of Plasma-Excitation Mechanisms in the Process of the Thermal Reduction of Graphene Oxide

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The dynamics of X-ray photoelectron emission spectra is studied in the region of the 1s carbon line with increasing treatment temperature for graphene-oxide samples. It is established that, as the degree of oxide reduction increases, the role of the mechanism related to energy losses for the excitation of π-plasmon oscillations produced in the presence of sp2 bonds in the carbon sample increases. Spectral analysis shows that the π-plasmon peak is manifested in the spectra of samples annealed at temperatures exceeding 200°C. When determining the differential cross sections for inelastic electron scattering, the difference between the energy losses in the surface sample layers and the homogeneous bulk located far from the surface is taken into account. The obtained spectra are compared with those of multilayer graphene and pyrolytic graphite. It is shown that the analysis of graphene oxide using X-ray photoelectron spectroscopy gives a picture on a nanometer scale. The obtained data can differ noticeably from the Raman spectroscopy data corresponding to the millimeter scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. I. Titelman, V. Gelman, S. Bron, et al., Carbon 43, 641 (2005). https://doi.org/10.1016/j.carbon.2004.10.035

    Article  CAS  Google Scholar 

  2. K. Yin, H. Li, Y. Xia, H. Bi, J. Sun, Z. Liu, and L. Sun, Nano-Micro Lett. 3, 51 (2011). https://doi.org/10.1007/BF03353652

    Article  CAS  Google Scholar 

  3. H. K. Jeong, Y. P. Lee, M. H. Jin, et al., Chem. Phys. Lett. 470, 255 (2009). https://doi.org/10.1016/j.cplett.2009.01.050

    Article  CAS  Google Scholar 

  4. S. H. Huh, in Physics and Applications of Graphene Experiments, Ed. by S. Mikhailov (InTech, Rijeka, 2011), Chap. 5, p. 73.

    Google Scholar 

  5. N. Tu, J. Choi, C. Park, and H. Kim, Chem. Mater. 27, 7362 (2015). https://doi.org/10.1021/acs.chemmater.5b02999

    Article  CAS  Google Scholar 

  6. Y. J. Oh, J. J. Yoo, Y. I. Kim, et al., Electrochim. Acta 116, 118 (2014). https://doi.org/10.1016/j.electacta.2013.11.040

    Article  CAS  Google Scholar 

  7. V. P. Afanas’ev, G. S. Bocharov, A. V. Eletskii, et al., J. Vac. Sci. Technol. B 35 (4), 041804 (2017). https://doi.org/10.1116/1.4994788

    Article  CAS  Google Scholar 

  8. N. Pauli, M. Novak, and S. Tougaard, Surf. Interface Anal. 45, 811 (2013). https://doi.org/10.1002/sia.5167

    Article  CAS  Google Scholar 

  9. T. Eberlein, U. Bangert, R. R. Nair, et al., Phys. Rev. B 77, 233 (2008). doi

    Article  Google Scholar 

  10. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1103/PhysRevB.77.233406

    Article  CAS  Google Scholar 

  11. W. S. M. Werner, Surf. Interface Anal. 23, 737 (1995). https://doi.org/10.1002/sia.740231103

    Article  CAS  Google Scholar 

  12. V. P. Afanas’ev, P. S. Kaplya, A. V. Lubenchenko, et al., Vacuum 105, 96 (2014). https://doi.org/10.1016/j.vacuum.2014.01.010

    Article  CAS  Google Scholar 

  13. V. P. Afanas’ev, O. Y. Golovina, A. S. Gryazev, et al., J. Vac. Sci. Technol. B 33, 03D101 (2015). https://doi.org/10.1116/1.4907228

  14. V. P. Afanas’ev, A. S. Gryazev, D. S. Efremenko, and P. S. Kaplya, Vacuum 136, 146 (2017). https://doi.org/10.1016/j.vacuum.2016.10.021

    Article  CAS  Google Scholar 

  15. J. Moulder, W. Stickle, P. Sobol, and K. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minnesota, 1995).

  16. G. S. Bocharov and A. V. Eletskii, in Proceed. Eur. Conf. Graphene (Barcelona, 2017), poster no. 306.

Download references

Funding

The work was made within the framework of the State Assignments nos. 3.1414.2017/4.6 and 3.7131.2017/6.7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Afanas’ev.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanas’ev, V.P., Bocharov, G.S., Gryazev, A.S. et al. Evolution of Plasma-Excitation Mechanisms in the Process of the Thermal Reduction of Graphene Oxide. J. Surf. Investig. 14, 366–370 (2020). https://doi.org/10.1134/S102745102002041X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102002041X

Keywords:

Navigation