Skip to main content
Log in

Effect of the Beam Current during the Electron-Beam Melting of Titanium Alloy Ti–6Al–4V on the Structural Features and Phase Transitions in Gas-Phase Hydrogenation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The structure of the titanium alloy Ti–6Al–4V manufactured by electron-beam melting is shown to be represented by initial β-phase grains more than 40 μm in size; the internal volume of the grains is filled with α-phase precipitates in the form of plates. The average size of the α plates is 1.6, 2, and 5 μm at beam currents of 2, 2.5, and 3 mA, respectively. In situ X-ray diffractometry using synchrotron radiation shows that the phase transitions in the titanium alloy are divided into three main stages during hydrogenation to a concentration of 0.6 wt % at a temperature of 650°C and a pressure of 1 atm. An increase in the beam current from 2 to 3 mA does not significantly affect the phase composition of the alloy. During hydrogenation, the growth rate of the volume concentration of the β phase is lower at a higher beam current. This indicates a decrease in the rate of hydrogen absorption with increasing beam current, which is associated with an increase in the size of α plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. Wang, Mater. Sci. Engin. A 213 (1–2), 134 (1996).

    Article  Google Scholar 

  2. I. Gurrappa, Mater. Characterization 51 (2–3), 131 (2003).

    Article  Google Scholar 

  3. R. W. Schutz and H. B. Watkins, Mater. Sci. Engin. A 243 (1–2), 305 (1998).

    Article  Google Scholar 

  4. M. Yamada, Mater. Sci. Engin. A 213 (1–2), 8 (1996).

    Article  Google Scholar 

  5. W. D. Brewer, R. K. Bird, and T. A. Wallace, Mater. Sci. Engin. A 243 (1–2), 299 (1998).

    Article  Google Scholar 

  6. F. X. Gil Mur, D. Rodriguez, and J. A. Planell, J. Alloys Compd. 234, 287 (1996).

    Article  Google Scholar 

  7. E. Lunarska, O. Chernyayeva, D. Lisovytskiy, et al., Mater. Sci. Engin. C 30, 181 (2010).

    Article  Google Scholar 

  8. Y. Furuya, A. Takasaki, K. Mizuno, et al., J. Alloys Compd. 446–447, 447 (2007).

    Article  Google Scholar 

  9. D. Eliezer, E. Tal-Gutelmacher, C. E. Cross, et al., Mater. Sci. Engin. A 421, 200 (2006).

    Article  Google Scholar 

  10. E. Tal-Gutelmacher, D. Eliezer, and E. Abramov, Mater. Sci. Engin. A 445–446, 625 (2007).

    Article  Google Scholar 

  11. F. Zeppelin, M. Haluska, and M. Hirscher, Thermochim. Acta 404, 251 (2003).

    Article  Google Scholar 

  12. S. V. Skvortsova, P. V. Panin, N. A. Nochovnaya, et al., Tekhnologiya Legkikh Splavov, No. 4, 35 (2011).

    Google Scholar 

  13. A. M. Lider, N. S. Pushilina, V. N. Kudiiarov, et al., Appl. Mechan. Mater 302, 92 (2013).

    Article  Google Scholar 

  14. A. N. Shmakov, B. P. Tolochko, I. L. Zhogin, and M. A. Sheromov, Abstracts of the VII Natl. RSNE-NBIK Conf., Moscow, 16–21 November 2009 (IK RAN-RNTs KI, Moscow, 2009), p. 559 [in Russian].

  15. A. N. Shmakov, M. G. Ivanov, B. P. Tolochko, et al., in Abstracts of the XVIII International Conference on Synchrotron Beam Use, Novosibirsk, 19-23 July 2010 (Novosibirsk, 2010), p. 68 [in Russian].

  16. V. M. Aul’chenko, in Synchrotron Radiation, Diffraction and Scattering. Young Researcher School, Novosibirsk, 19-23 October 2009 (Novosibirsk, 2009), p. 6 [in Russian].

  17. N. F. Anoshkin, A. F. Belov, S. G. Glazunov, et al., Titan Alloy Metallography (Metallurgiya, Moscow, 1980) [in Russian].

    Google Scholar 

  18. T. Zhu and M. Li, J. Alloys Compd. 481, 480 (2009).

    Article  Google Scholar 

  19. Y. K. Kim, H. K. Kim, W. S. Jung, and B. J. Lee, Comput. Mater. Sci 119, 1 (2016).

    Article  Google Scholar 

  20. P. Sun, Z. Z. Fang, M. Koopman, et al., Acta Materialia 84, 29 (2015).

    Article  Google Scholar 

  21. B. A. Kolachev, F. S. Mamonova, and V. S. Lyasotskaya, Metal Sci. Heat Treatment 17, 695 (1975).

    Article  Google Scholar 

  22. E. Tal-Gutelmacher and D. Eliezer, Mater. Transac 45, 1594 (2004).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.N. Shmakov and Z.S. Vinokurov, our colleagues at the Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, for assistance in conducting research at the “Precision Diffractometry II” station. This work was supported by the Russian Science Foundation, project no. 17-79-20 100, and within the framework of the program to improve the competitiveness of Tomsk Polytechnic University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Pushilina.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushilina, N.S., Kudiiarov, V.N., Syrtanov, M.S. et al. Effect of the Beam Current during the Electron-Beam Melting of Titanium Alloy Ti–6Al–4V on the Structural Features and Phase Transitions in Gas-Phase Hydrogenation. J. Surf. Investig. 13, 429–433 (2019). https://doi.org/10.1134/S1027451019030170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019030170

Keywords:

Navigation